IDEAS home Printed from
   My bibliography  Save this paper

Scaling properties and universality of first-passage time probabilities in financial markets


  • Josep Perell'o
  • Mario Guti'errez-Roig
  • Jaume Masoliver


Financial markets provide an ideal frame for the study of crossing or first-passage time events of non-Gaussian correlated dynamics mainly because large data sets are available. Tick-by-tick data of six futures markets are herein considered resulting in fat tailed first-passage time probabilities. The scaling of the return with the standard deviation collapses the probabilities of all markets examined, and also for different time horizons, into single curves, suggesting that first-passage statistics is market independent (at least for high-frequency data). On the other hand, a very closely related quantity, the survival probability, shows, away from the center and tails of the distribution, a hyperbolic $t^{-1/2}$ decay typical of a Markovian dynamics albeit the existence of memory in markets. Modifications of the Weibull and Student distributions are good candidates for the phenomenological description of first-passage time properties under certain regimes. The scaling strategies shown may be useful for risk control and algorithmic trading.

Suggested Citation

  • Josep Perell'o & Mario Guti'errez-Roig & Jaume Masoliver, 2011. "Scaling properties and universality of first-passage time probabilities in financial markets," Papers 1107.1174,, revised Sep 2011.
  • Handle: RePEc:arx:papers:1107.1174

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Liu, Chenggong & Shang, Pengjian & Feng, Guochen, 2017. "The high order dispersion analysis based on first-passage-time probability in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 1-9.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1107.1174. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.