IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1102.5126.html
   My bibliography  Save this paper

Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model

Author

Listed:
  • Mark Davis
  • Sebastien Lleo

Abstract

In this article we extend earlier work on the jump-diffusion risk-sensitive asset management problem [SIAM J. Fin. Math. (2011) 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the HJB equation is a partial integro-differential equation (PIDE). By combining viscosity solutions with a change of notation, a policy improvement argument and classical results on parabolic PDEs we prove that the HJB PIDE admits a unique smooth solution. A verification theorem concludes the resolution of this problem.

Suggested Citation

  • Mark Davis & Sebastien Lleo, 2011. "Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model," Papers 1102.5126, arXiv.org, revised Sep 2012.
  • Handle: RePEc:arx:papers:1102.5126
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1102.5126
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Stefan Thurner & J. Doyne Farmer & John Geanakoplos, 2012. "Leverage causes fat tails and clustered volatility," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 695-707, February.
    3. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.5126. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.