IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Asymptotics and Duality for the Davis and Norman Problem

Listed author(s):
  • Stefan Gerhold
  • Johannes Muhle-Karbe
  • Walter Schachermayer
Registered author(s):

    We revisit the problem of maximizing expected logarithmic utility from consumption over an infinite horizon in the Black-Scholes model with proportional transaction costs, as studied in the seminal paper of Davis and Norman [Math. Operation Research, 15, 1990]. Similarly to Kallsen and Muhle-Karbe [Ann. Appl. Probab., 20, 2010], we tackle this problem by determining a shadow price, that is, a frictionless price process with values in the bid-ask spread which leads to the same optimization problem. However, we use a different parametrization, which facilitates computation and verification. Moreover, for small transaction costs, we determine fractional Taylor expansions of arbitrary order for the boundaries of the no-trade region and the value function. This extends work of Janecek and Shreve [Finance Stoch., 8, 2004], who determined the leading terms of these power series.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1010.0627.

    in new window

    Date of creation: Oct 2010
    Date of revision: Aug 2011
    Handle: RePEc:arx:papers:1010.0627
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1010.0627. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.