IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0904.0624.html
   My bibliography  Save this paper

A new approach for scenario generation in Risk management

Author

Listed:
  • Juan-Pablo Ortega
  • Rainer Pullirsch
  • Josef Teichmann
  • Julian Wergieluk

Abstract

We provide a new dynamic approach to scenario generation for the purposes of risk management in the banking industry. We connect ideas from conventional techniques -- like historical and Monte Carlo simulation -- and we come up with a hybrid method that shares the advantages of standard procedures but eliminates several of their drawbacks. Instead of considering the static problem of constructing one or ten day ahead distributions for vectors of risk factors, we embed the problem into a dynamic framework, where any time horizon can be consistently simulated. Additionally, we use standard models from mathematical finance for each risk factor, whence bridging the worlds of trading and risk management. Our approach is based on stochastic differential equations (SDEs), like the HJM-equation or the Black-Scholes equation, governing the time evolution of risk factors, on an empirical calibration method to the market for the chosen SDEs, and on an Euler scheme (or high-order schemes) for the numerical evaluation of the respective SDEs. The empirical calibration procedure presented in this paper can be seen as the SDE-counterpart of the so called Filtered Historical Simulation method; the behavior of volatility stems in our case out of the assumptions on the underlying SDEs. Furthermore, we are able to easily incorporate "middle-size" and "large-size" events within our framework always making a precise distinction between the information obtained from the market and the one coming from the necessary a-priori intuition of the risk manager. Results of one concrete implementation are provided.

Suggested Citation

  • Juan-Pablo Ortega & Rainer Pullirsch & Josef Teichmann & Julian Wergieluk, 2009. "A new approach for scenario generation in Risk management," Papers 0904.0624, arXiv.org, revised Aug 2009.
  • Handle: RePEc:arx:papers:0904.0624
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0904.0624
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Maria Siopacha & Josef Teichmann, 2007. "Weak and Strong Taylor methods for numerical solutions of stochastic differential equations," Papers 0704.0745, arXiv.org.
    3. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    4. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466.
    5. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    6. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410.
    7. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. " Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    8. Martin Keller-Ressel & Thomas Steiner, 2008. "Yield curve shapes and the asymptotic short rate distribution in affine one-factor models," Finance and Stochastics, Springer, vol. 12(2), pages 149-172, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.0624. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.