IDEAS home Printed from https://ideas.repec.org/p/apk/doctra/2303.html
   My bibliography  Save this paper

Functional Time Series in the Analysis of Expected Inflation Survey in Costa Rica

Author

Listed:
  • Fabio Gómez-Rodríguez

    (Department of Economic Research, Central Bank of Costa Rica)

Abstract

Expected inflation surveys show, month by month, a variety perspectives on inflation’s future path. Statistics such as the mean, median, and percentiles typically summarize the information contained in these surveys. This paper uses functional time series to analyze the entire distribution of inflation expectations surveys. Functional components become crtitical in sumarzing the data. The analysis consists of three exercises: i) complete, through simulations and macroeconomic variables, the interruption of these surveys from December 2020 to November 2021, ii) predict what will be the density function (and with it the distribution) of inflation expectations for the current month and iii) generate an expected inflation instrument based on data from surveys and the market that allows interpreting expectations and taking advantage of their predictive power. It is recommended to use the entire distribution of inflation expectations in monetary policy analysis. ***Resumen: Las encuestas de expectativas de inflación muestran, mes a mes, una variedad perspectivas sobre lo que va ser la inflación en el futuro. Típicamente se usan estadísticas como la media, la mediana y percentiles para resumir la información contenida en estas encuestas. En este documento de investigación se usan series de tiempo funcionales para analizar toda la distribución de las encuestas de expectativas de inflación. Con este fin se extraen componentes principales funcionales que luego se usan en tres ejercicios: i) completar por medio de simulaciones y variables macroeconómicas el periodo de pausa de las encuestas de diciembre 2020 a noviembre 2021, ii) predecir la que va ser la función de densidad (y con esta la distribución) de la encuestas de expectativas de inflación para el mes en curso y iii) generar un indicador de expectativas de inflación basado en la información de encuestas y de mercado. Esto permite interpretar las expectativas y aprovechar el poder predictivo de la mismas. Se recomienda usar toda la distribución de las expectativas de inflación en el análisis de política monetaria.

Suggested Citation

  • Fabio Gómez-Rodríguez, 2023. "Functional Time Series in the Analysis of Expected Inflation Survey in Costa Rica," Documentos de Trabajo 2303, Banco Central de Costa Rica.
  • Handle: RePEc:apk:doctra:2303
    as

    Download full text from publisher

    File URL: https://repositorioinvestigaciones.bccr.fi.cr/handle/20.500.12506/381
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joon Y. & Qian, Junhui, 2012. "Functional regression of continuous state distributions," Journal of Econometrics, Elsevier, vol. 167(2), pages 397-412.
    2. Yoosoon Chang & Fabio Gómez-Rodríguez & Mr. Gee Hee Hong, 2022. "The Effects of Economic Shocks on Heterogeneous Inflation Expectations," IMF Working Papers 2022/132, International Monetary Fund.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hilde C. Bjørnland & Yoosoon Chang & Jamie L. Cross, 2023. "Oil and the Stock Market Revisited: A Mixed Functional VAR Approach," CAMA Working Papers 2023-18, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Yoosoon Chang & Ana María Herrera & Elena Pesavento, 2023. "Oil prices uncertainty, endogenous regime switching, and inflation anchoring," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 820-839, September.
    3. Andros Kourtellos & Christos Antonios Statheas & Marios Zachariadis, 2025. "What can we learn from the distributions of inflation expectations across European households?," University of Cyprus Working Papers in Economics 02-2025, University of Cyprus Department of Economics.
    4. Yoosoon Chang & Soyoung Kim & Joon Y. Park, 2025. "How Do Macroaggregates and Income Distribution Interact Dynamically? A Novel Structural Mixed Autoregression with Aggregate and Functional Variables," Working Papers No 01/2025, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    5. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    6. Park, Joon Y. & Shin, Kwanho & Whang, Yoon-Jae, 2010. "A semiparametric cointegrating regression: Investigating the effects of age distributions on consumption and saving," Journal of Econometrics, Elsevier, vol. 157(1), pages 165-178, July.
    7. Haugom, Erik & Lien, Gudbrand & Veka, Steinar & Westgaard, Sjur, 2014. "Covariance estimation using high-frequency data: Sensitivities of estimation methods," Economic Modelling, Elsevier, vol. 43(C), pages 416-425.
    8. Kyungsik Nam & Won-Ki Seo, 2025. "Functional Regression with Nonstationarity and Error Contamination: Application to the Economic Impact of Climate Change," Papers 2509.08591, arXiv.org, revised Oct 2025.
    9. Meeks, Roland & Monti, Francesca, 2023. "Heterogeneous beliefs and the Phillips curve," Journal of Monetary Economics, Elsevier, vol. 139(C), pages 41-54.
    10. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    11. Yoosoon Chang & Robert K. Kaufmann & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2015. "Time Series Analysis of Global Temperature Distributions: Identifying and Estimating Persistent Features in Temperature Anomalies," Working Papers 1513, Department of Economics, University of Missouri, revised 25 Jul 2016.
    12. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    13. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    14. Won‐Ki Seo, 2024. "Functional principal component analysis for cointegrated functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 320-330, March.
    15. Yoosoon Chang & Steven Durlauf & Seunghee Lee & Joon Park, 2023. "A Trajectories-Based Approach to Measuring Intergenerational Mobility," CAEPR Working Papers 2023-004 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    16. Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.
    17. Yoosoon Chang & Fabio Gómez-Rodríguez & Mr. Gee Hee Hong, 2022. "The Effects of Economic Shocks on Heterogeneous Inflation Expectations," IMF Working Papers 2022/132, International Monetary Fund.
    18. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    19. Yoosoon Chang & J. Isaac Miller & Joon K. Park, 2024. "Shocking Climate: Identifying Economic Damages from Anthropogenic and Natural Climate Change," CAEPR Working Papers 2024-007 Classification-E, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    20. Yoshiyuki ARATA, 2017. "A Functional Linear Regression Model in the Space of Probability Density Functions," Discussion papers 17015, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory
    • E65 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Studies of Particular Policy Episodes
    • H11 - Public Economics - - Structure and Scope of Government - - - Structure and Scope of Government
    • H30 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apk:doctra:2303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Departamento de Investigación Económica (email available below). General contact details of provider: https://edirc.repec.org/data/bccrrcr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.