IDEAS home Printed from https://ideas.repec.org/p/ags/saea19/284327.html
   My bibliography  Save this paper

Optimal Forage and Supplement Balance for Organic Dairy Farms in the Southeastern United States

Author

Listed:
  • Allison, John T.
  • Dillon, Carl R.
  • Burdine, Kenneth H.

Abstract

With prevailing economic concerns facing the conventional dairy industry, organic production is a potential alternative for dairy producers as evidenced by a substantial number of operations pursuing organic markets in an effort to improve profitability. However, economic research is limited and the long-term economic sustainability of the system has been questioned.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Allison, John T. & Dillon, Carl R. & Burdine, Kenneth H., 2019. "Optimal Forage and Supplement Balance for Organic Dairy Farms in the Southeastern United States," 2019 Annual Meeting, February 2-5, 2019, Birmingham, Alabama 284327, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea19:284327
    DOI: 10.22004/ag.econ.284327
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/284327/files/Contribution_288_final.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.284327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gillespie, Jeffrey & Nehring, Richard, 2014. "Pasture-Based versus Conventional Milk Production: Where Is the Profit?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 46(4), pages 543-558, November.
    2. van Calker, K. J. & Berentsen, P. B. M. & de Boer, I. M. J. & Giesen, G. W. J. & Huirne, R. B. M., 2004. "An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"," Agricultural Systems, Elsevier, vol. 82(2), pages 139-160, November.
    3. Doole, Graeme J. & Romera, Alvaro J., 2013. "Detailed description of grazing systems using nonlinear optimisation methods: A model of a pasture-based New Zealand dairy farm," Agricultural Systems, Elsevier, vol. 122(C), pages 33-41.
    4. Flaten, O. & Lien, G., 2007. "Stochastic utility-efficient programming of organic dairy farms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1574-1583, September.
    5. Kerselaers, Eva & De Cock, Lieve & Lauwers, Ludwig & Van Huylenbroeck, Guido, 2007. "Modelling farm-level economic potential for conversion to organic farming," Agricultural Systems, Elsevier, vol. 94(3), pages 671-682, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
    2. Veysset, P. & Lherm, M. & Bébin, D., 2010. "Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts," Agricultural Systems, Elsevier, vol. 103(1), pages 41-50, January.
    3. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    4. van Calker, Klaas Jan & Antink, Rudi H.J. Hooch & Beldman, Alfons C.G. & Mauser, Anniek, 2005. "Caring Dairy: A Sustainable Dairy Farming Initiative in Europe," 15th Congress, Campinas SP, Brazil, August 14-19, 2005 24234, International Farm Management Association.
    5. Doole, Graeme J. & Romera, Alvaro J., 2014. "Implications of a nitrogen leaching efficiency metric for pasture-based dairy farms," Agricultural Water Management, Elsevier, vol. 142(C), pages 10-18.
    6. Hana Stojanová & Veronika Blašková & Michaela Lněničková, 2018. "The Importance of Factors Affecting the Entry of Entrepreneurial Subjects to Organic Farming in the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(4), pages 1017-1024.
    7. Acs, Szvetlana & Berentsen, Paul B.M. & Huirne, Ruud & van Asseldonk, Marcel, 2009. "Effect of yield and price risk on conversion from conventional to organic farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 1-19.
    8. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    9. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    10. Kostrova, Alisa & Britz, Wolfgang & Djanibekov, Utkur & Finger, Robert, 2016. "Monte-Carlo Simulation and Stochastic Programming in Real Options Valuation: the Case of Perennial Energy Crop Cultivation," Discussion Papers 250253, University of Bonn, Institute for Food and Resource Economics.
    11. Ivana Brožová & Jiří Vaněk, 2013. "Assessment of economic efficiency of conventional and organic agricultural enterprises in a chosen region," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(2), pages 297-307.
    12. Weerahewa, Jeevika & Dayananda, Dasuni, 2023. "Land use changes and economic effects of alternative fertilizer policies: A simulation analysis with a bio-economic model for a Tank Village of Sri Lanka," Agricultural Systems, Elsevier, vol. 205(C).
    13. Lelyon, Baptiste & Daniel, Karine & Chatellier, Vincent, 2008. "Decoupling and prices: determinant of dairy farmers’ choices? A model to analyse impacts of the 2003 CAP reform," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44250, European Association of Agricultural Economists.
    14. van Calker, K.J. & Berentsen, P.B.M. & de Boer, I.J.M. & Giesen, G.W.J. & Huirne, R.B.M., 2007. "Modelling worker physical health and societal sustainability at farm level: An application to conventional and organic dairy farming," Agricultural Systems, Elsevier, vol. 94(2), pages 205-219, May.
    15. Rasmussen, Svend & Damgaard, Martin, 2008. "Numerical Estimation of Agricultural Supply Functions - A Micro Economic Approach based on Mathematical Programming," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44181, European Association of Agricultural Economists.
    16. Lien, Gudbrand & Hardaker, J. Brian & Asseldonk, Marcel A.P.M. van & Richardson, James W., 2009. "Risk programming and sparse data: how to get more reliable results," Agricultural Systems, Elsevier, vol. 101(1-2), pages 42-48, June.
    17. Kocjančič, Tina & Debeljak, Marko & Žgajnar, Jaka & Juvančič, Luka, 2018. "Incorporation of emergy into multiple-criteria decision analysis for sustainable and resilient structure of dairy farms in Slovenia," Agricultural Systems, Elsevier, vol. 164(C), pages 71-83.
    18. van Boxmeer, Emma & Modernel, Pablo & Viets, Theo, 2021. "Environmental and economic performance of Dutch dairy farms on peat soil," Agricultural Systems, Elsevier, vol. 193(C).
    19. Notte, Gastón & Cancela, Héctor & Pedemonte, Martín & Chilibroste, Pablo & Rossing, Walter & Groot, Jeroen C.J., 2020. "A multi-objective optimization model for dairy feeding management," Agricultural Systems, Elsevier, vol. 183(C).
    20. Notte, Gastón & Pedemonte, Martín & Cancela, Héctor & Chilibroste, Pablo, 2016. "Resource allocation in pastoral dairy production systems: Evaluating exact and genetic algorithms approaches," Agricultural Systems, Elsevier, vol. 148(C), pages 114-123.

    More about this item

    Keywords

    Agricultural Finance; Farm Management;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea19:284327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.