IDEAS home Printed from https://ideas.repec.org/p/ags/iaae18/277101.html
   My bibliography  Save this paper

Statistical Matching in agricultural economics: how to integrate different farm data sources

Author

Listed:
  • D'Alberto, R.
  • Raggi, M.

Abstract

This study approaches the challenge of integrating different farm data sources by exploiting all the information that researchers already have at disposal. Indeed, due to privacy claim constraints, time-demanding data releasing procedures, etc. farm elementary data are often either partially available or difficult-to-find. In addition, collecting new data can be both highly expensive and time-demanding. A suitable solution is then to aggregate different data sources which are easily and/or already available. This work attempts to deal with both farm data shortage and the characteristics of the observational studies research context. Indeed, we integrate farm data resorting to the non-parametric micro SM hot deck techniques, which guarantee the preservation of the real observed data and avoid the misspecification bias generated by the parametric framework. This is remarkable in the observational studies research context (e.g. for the counterfactual analysis in agricultural economics) where, in order to assess a policy impact, we have to deal with just observed data. We apply the hot deck techniques to integrate FADN (Farm Accountancy Data Network) data and an ad hoc project survey referred to the Emilia-Romagna (Italy) farm population. We also propose a validation strategy in order to assess the matching goodness. Acknowledgement :

Suggested Citation

  • D'Alberto, R. & Raggi, M., 2018. "Statistical Matching in agricultural economics: how to integrate different farm data sources," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277101, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae18:277101
    DOI: 10.22004/ag.econ.277101
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/277101/files/942.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.277101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Conti, Pier Luigi & Marella, Daniela & Scanu, Mauro, 2008. "Evaluation of matching noise for imputation techniques based on nonparametric local linear regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 354-365, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahfock, Daniel & Pyne, Saumyadipta & McLachlan, Geoffrey J., 2022. "Statistical file-matching of non-Gaussian data: A game theoretic approach," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
    3. Zhang Li-Chun, 2015. "On Proxy Variables and Categorical Data Fusion," Journal of Official Statistics, Sciendo, vol. 31(4), pages 783-807, December.
    4. Endres Eva & Fink Paul & Augustin Thomas, 2019. "Imprecise Imputation: A Nonparametric Micro Approach Reflecting the Natural Uncertainty of Statistical Matching with Categorical Data," Journal of Official Statistics, Sciendo, vol. 35(3), pages 599-624, September.
    5. Riccardo D’Alberto & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2018. "AES Impact Evaluation With Integrated Farm Data: Combining Statistical Matching and Propensity Score Matching," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    6. Antonio D’Ambrosio & Massimo Aria & Roberta Siciliano, 2012. "Accurate Tree-based Missing Data Imputation and Data Fusion within the Statistical Learning Paradigm," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 227-258, July.
    7. Zahra Rezaei Ghahroodi, 2023. "Statistical matching of sample survey data: application to integrate Iranian time use and labour force surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 1023-1051, September.
    8. Claramunt González, Juan & van Delden, Arnout & de Waal, Ton, 2023. "Assessment of the effect of constraints in a new multivariate mixed method for statistical matching," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae18:277101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.