IDEAS home Printed from https://ideas.repec.org/p/ags/feemer/156489.html
   My bibliography  Save this paper

A Fear Index to Predict Oil Futures Returns

Author

Listed:
  • Julien, Chevallier
  • Sévi, Benoît

Abstract

This paper evaluates the predictability of WTI light sweet crude oil futures by using the variance risk premium, i.e. the difference between model-free measures of implied and realized volatilities. Additional regressors known for their ability to explain crude oil futures prices are also considered, capturing macroeconomic, financial and oil-specific influences. The results indicate that the explanatory power of the (negative) variance risk premium on oil excess returns is particularly strong (up to 25% for the adjusted Rsquared across our regressions). It complements other financial (e.g. default spread) and oil-specific (e.g. US oil stocks) factors highlighted in previous literature.

Suggested Citation

  • Julien, Chevallier & Sévi, Benoît, 2013. "A Fear Index to Predict Oil Futures Returns," Energy: Resources and Markets 156489, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemer:156489
    DOI: 10.22004/ag.econ.156489
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/156489/files/NDL2013-062.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.156489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
    3. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    4. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    5. Zagaglia, Paolo, 2010. "Macroeconomic factors and oil futures prices: A data-rich model," Energy Economics, Elsevier, vol. 32(2), pages 409-417, March.
    6. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    9. Hong, Harrison & Yogo, Motohiro, 2012. "What does futures market interest tell us about the macroeconomy and asset prices?," Journal of Financial Economics, Elsevier, vol. 105(3), pages 473-490.
    10. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    13. Driesprong, Gerben & Jacobsen, Ben & Maat, Benjamin, 2008. "Striking oil: Another puzzle?," Journal of Financial Economics, Elsevier, vol. 89(2), pages 307-327, August.
    14. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    15. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    16. repec:taf:jnlbes:v:30:y:2012:i:2:p:326-336 is not listed on IDEAS
    17. Frans A. De Roon & Theo E. Nijman & Chris Veld, 2000. "Hedging Pressure Effects in Futures Markets," Journal of Finance, American Finance Association, vol. 55(3), pages 1437-1456, June.
    18. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    19. Christiane Baumeister & Lutz Kilian, 2011. "Real-Time Forecasts of the Real Price of Oil," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 326-336, September.
    20. Julien Chevallier, 2013. "Price relationships in crude oil futures: new evidence from CFTC disaggregated data," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(2), pages 133-170, April.
    21. Aboura, Sofiane & Chevallier, Julien, 2013. "Leverage vs. feedback: Which Effect drives the oil market?," Finance Research Letters, Elsevier, vol. 10(3), pages 131-141.
    22. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2012. "On the Macroeconomic Determinants of the Long-Term Oil-Stock Correlation," Working Papers 0525, University of Heidelberg, Department of Economics.
    23. repec:cii:cepiei:2011-q2-3-126-127-2 is not listed on IDEAS
    24. Thomas A. Knetsch, 2007. "Forecasting the price of crude oil via convenience yield predictions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 527-549.
    25. repec:dau:papers:123456789/11712 is not listed on IDEAS
    26. Kaufmann, Robert K., 2011. "The role of market fundamentals and speculation in recent price changes for crude oil," Energy Policy, Elsevier, vol. 39(1), pages 105-115, January.
    27. repec:dau:papers:123456789/11663 is not listed on IDEAS
    28. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    29. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    30. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    31. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    32. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    33. Lin Peng & Turan G. Bali, 2006. "Is there a risk-return trade-off? Evidence from high-frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198.
    34. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    35. Bali, Turan G. & Engle, Robert F., 2010. "The intertemporal capital asset pricing model with dynamic conditional correlations," Journal of Monetary Economics, Elsevier, vol. 57(4), pages 377-390, May.
    36. repec:dau:papers:123456789/11382 is not listed on IDEAS
    37. Yannick Le Pen & Benoît Sévi, 2011. "Macro factors in oil futures returns," International Economics, CEPII research center, issue 126-127, pages 13-38.
    38. Doran, James S. & Ronn, Ehud I., 2008. "Computing the market price of volatility risk in the energy commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2541-2552, December.
    39. Nikolay Gospodinov & Serena Ng, 2013. "Commodity Prices, Convenience Yields, and Inflation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 206-219, March.
    40. repec:ipg:wpaper:19 is not listed on IDEAS
    41. Bing Han, 2008. "Investor Sentiment and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 387-414, January.
    42. repec:dau:papers:123456789/9860 is not listed on IDEAS
    43. repec:dau:papers:123456789/6887 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/11714 is not listed on IDEAS
    2. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    3. Yannick Le Pen & Benoît Sévi, 2013. "Futures Trading and the Excess Comovement of Commodity Prices," Working Papers halshs-00793724, HAL.
    4. repec:dau:papers:123456789/11382 is not listed on IDEAS
    5. repec:ipg:wpaper:19 is not listed on IDEAS
    6. repec:ipg:wpaper:2013-019 is not listed on IDEAS
    7. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    8. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    9. repec:dau:papers:123456789/11663 is not listed on IDEAS
    10. Degiannakis, Stavros & Filis, George, 2023. "Oil price assumptions for macroeconomic policy," Energy Economics, Elsevier, vol. 117(C).
    11. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    12. Bassam Fattouh & Lutz Kilian & Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, , vol. 34(3), pages 7-33, July.
    13. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    14. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    15. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
    16. Renato Faccini & Eirini Konstantinidi & George Skiadopoulos & Sylvia Sarantopoulou-Chiourea, 2019. "A New Predictor of U.S. Real Economic Activity: The S&P 500 Option Implied Risk Aversion," Management Science, INFORMS, vol. 65(10), pages 4927-4949, October.
    17. repec:ipg:wpaper:2014-053 is not listed on IDEAS
    18. Turan G. Bali & Hao Zhou, 2011. "Risk, uncertainty, and expected returns," Finance and Economics Discussion Series 2011-45, Board of Governors of the Federal Reserve System (U.S.).
    19. Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
    20. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    21. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    22. Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
    23. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    24. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    25. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    26. Magkonis, Georgios & Tsouknidis, Dimitris A., 2017. "Dynamic spillover effects across petroleum spot and futures volatilities, trading volume and open interest," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 104-118.

    More about this item

    Keywords

    Financial Economics;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemer:156489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.