IDEAS home Printed from https://ideas.repec.org/p/aap/wpaper/167.html
   My bibliography  Save this paper

On the Discrete Cramér-von Mises Statistics under Random Censorship

Author

Listed:
  • Dorival Leão
  • Alberto Ohashi

Abstract

In this work, nonparametric log-rank-type statistical tests are introduced in order to verify homogeneity of purely discrete variables subject to arbitrary right-censoring for infinitely many categories. In particular, the Cram´er-von Mises test statistics for discrete models under censoring is established. In order to introduce the test, we develop the weighted log-rank statistics in a general multivariate discrete setup which complements previous fundamental results of Gill [13] and Andersen et al. [5]. Due to the presence of persistent jumps over the unbounded set of categories, the asymptotic distribution of the test is not distribution-free. The statistical test for a large class of weighted processes is described as a weighted series of independent chi-squared variables whose weights can be consistently estimated. Moreover, the associated limiting covariance operator can be infinite-dimensional which allows us to deal consistently with an infinite survival time typically founded in long-term survival analysis such as cure-rate models. The test is consistent to any alternative hypothesis and, in particular, it allows us to deal with crossing hazard functions. We also provide a simulation study in order to illustrate the theoretical results.

Suggested Citation

  • Dorival Leão & Alberto Ohashi, 2012. "On the Discrete Cramér-von Mises Statistics under Random Censorship," Business and Economics Working Papers 167, Unidade de Negocios e Economia, Insper.
  • Handle: RePEc:aap:wpaper:167
    as

    Download full text from publisher

    File URL: https://repositorio.insper.edu.br/handle/11224/5914
    Download Restriction: no

    File URL: https://repositorio.insper.edu.br/handle/11224/5914
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karlis, Dimitris & Patilea, Valentin, 2007. "Confidence intervals of the hazard rate function for discrete distributions using mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5388-5401, July.
    2. Dedecker, Jérôme & Merlevède, Florence, 2003. "The conditional central limit theorem in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 229-262, December.
    3. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leão, Dorival & Ohashi, Alberto, 2012. "On the Discrete Cramér-von Mises Statistics under Random Censorship," Insper Working Papers wpe_275, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    2. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    3. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    4. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    5. David Lamparter & Daniel Marbach & Rico Rueedi & Zoltán Kutalik & Sven Bergmann, 2016. "Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.
    6. Ghiglietti, Andrea & Paganoni, Anna Maria, 2017. "Exact tests for the means of Gaussian stochastic processes," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 102-107.
    7. Anton Rask Lundborg & Rajen D. Shah & Jonas Peters, 2022. "Conditional independence testing in Hilbert spaces with applications to functional data analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1821-1850, November.
    8. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    9. Sofer Tamar, 2017. "Confidence intervals for heritability via Haseman-Elston regression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(4), pages 259-273, September.
    10. Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    11. Roberto Colombi & Sabrina Giordano, 2019. "Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1175-1202, December.
    12. Colombi, Roberto, 2020. "Selection tests for possibly misspecified hierarchical multinomial marginal models," Econometrics and Statistics, Elsevier, vol. 16(C), pages 136-147.
    13. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    14. Jérôme Dedecker & Florence Merlevède & Dalibor Volný, 2007. "On the Weak Invariance Principle for Non-Adapted Sequences under Projective Criteria," Journal of Theoretical Probability, Springer, vol. 20(4), pages 971-1004, December.
    15. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    16. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    17. Bigot, Aurélie, 2024. "Central limit theorem under the Dedecker–Rio condition in some Banach spaces," Stochastic Processes and their Applications, Elsevier, vol. 176(C).
    18. Salcedo, Gladys E. & Porto, Rogério F. & Morettin, Pedro A., 2012. "Comparing non-stationary and irregularly spaced time series," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3921-3934.
    19. Rasmus Erlemann & Richard Lockhart & Rihan Yao, 2022. "Cramér‐von Mises tests for change points," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 802-830, June.
    20. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aap:wpaper:167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Biblioteca Telles (email available below). General contact details of provider: https://edirc.repec.org/data/inspebr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.