Author
Listed:
- Wikil Kwak
- Yong Shi
- Cheng Few Lee
Abstract
This chapter shows examples of applying several current data mining approaches and alternative models in an accounting and finance context such as predicting bankruptcy using US, Korean, and Chinese capital market data. Big data in accounting and finance context is a good fit for data analytic tool applications like data mining. Our previous study also empirically tested Japanese capital market data and found similar prediction rates. However, overall prediction rates depend on different countries and time periods (Mihalovic, 2016). These results are an improvement on previous bankruptcy prediction studies using traditional probit or logit analysis or multiple discriminant analysis. The recent survival model shows similar prediction rates in bankruptcy studies. However, we need longitudinal data to use the survival model. Because of computer technology advances, it is easier to apply data mining approaches. In addition, current data mining methods can be applied to other accounting and finance contexts such as auditor changes, audit opinion prediction studies, and internal control weakness studies. Our first paper shows 13 data mining approaches to predict bankruptcy after the Sarbanes–Oxley Act (SOX) (2002) implementation using 2008–2009 US data with 13 financial ratios and internal control weaknesses, dividend payout, and market return variables. Our second paper shows application of a Multiple Criteria Linear Programming Data Mining Approach using Korean data. Our last paper shows bankruptcy prediction models using Chinese firm data via several data mining tools and compared with those of traditional logit analysis. Analytic Hierarchy Process and Fuzzy Set also can be applied as an alternative method of data mining tools in accounting and finance studies. Natural language processing can be used as a part of the artificial intelligence domain in accounting and finance in the future (Fisher et al., 2016).
Suggested Citation
Wikil Kwak & Yong Shi & Cheng Few Lee, 2020.
"Data Mining Applications in Accounting and Finance Context,"
World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 21, pages 823-857,
World Scientific Publishing Co. Pte. Ltd..
Handle:
RePEc:wsi:wschap:9789811202391_0021
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
More about this item
Keywords
;
;
;
;
;
;
;
;
;
;
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wschap:9789811202391_0021. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/page/worldscibooks .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.