IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-01039-2_5.html

Surmise Systems

In: Learning Spaces

Author

Listed:
  • Jean-Claude Falmagne

    (University of California, Irvine, Department of Cognitive Sciences, Institute of Mathematical Behavioral Sciences)

  • Jean-Paul Doignon

    (Université Libre de Bruxelles, Département de Mathématique)

Abstract

When a knowledge structure is a quasi ordinal space, it can be faithfully represented by its surmise relation (cf. Theorem 3.8.3). In fact, as illustrated by Example 3.7.4, a fnite ordinal space is completely recoverable from the Hasse diagram of the surmise relation. However, for knowledge structures in general, and even for knowledge spaces, the information provided by the surmise relation may be insufficient. In this chapter, we study the ‘surmise system,’ a concept generalizing that of a surmise relation, and allowing more than one possible learning ‘foundation’1 for an item2. One of the two main results of this chapter is Theorem 5.2.5 which establishes, in the style of Theorem 3.8.3 for quasi ordinal spaces, a one-to-one correspondence between knowledge spaces and surmise systems.

Suggested Citation

  • Jean-Claude Falmagne & Jean-Paul Doignon, 2011. "Surmise Systems," Springer Books, in: Learning Spaces, chapter 5, pages 81-101, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-01039-2_5
    DOI: 10.1007/978-3-642-01039-2_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-01039-2_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.