IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-540-75999-7_27.html
   My bibliography  Save this book chapter

An Application of Stochastic Meshfree Method in the Field of Fracture Mechanics

In: Computational Mechanics

Author

Listed:
  • C. O. Arun

    (Indian Institute of Technology Madras, Structural Engineering Division, Department of Civil Engineering)

  • B. N. Rao

    (Indian Institute of Technology Madras, Structural Engineering Division, Department of Civil Engineering)

  • M. S. Siva Kumar

    (Indian Institute of Technology Madras, Structural Engineering Division, Department of Civil Engineering)

Abstract

In the stochastic mechanics community, the need to account for uncertainty has long been recognized as key to achieving the reliable design of structural and mechanical systems. It is generally agreed that advanced computational tools must be employed to provide the necessary computational framework for describing structural response. A currently popular method is the stochastic finite element method (SFEM), which integrates probability theory with the standard finite element method (FEM). However, SFEM requires a structured mesh to perform the underlying finite element analysis. It is generally recognized that the creation of workable meshes for complex geometric configurations can be difficult, time consuming, and expensive. The underlying structures of these methods, which rely on a mesh, are cumbersome in treating moving cracks or mesh distortion. Consequently, the only viable option when applying FEM is to remesh during each discrete step of the model’s evolution. This creates numerical difficulties, even for deterministic analysis, and often leads to degradation in solution accuracy, complexity in computer programming, and a computationally intensive environment. Consequently, there is considerable interest in eliminating or greatly simplifying the meshing task. In recent years, a class of Galerkin-based meshfree or meshless methods have been developed that do not require a structured mesh to discretize the problem, such as the element-free Galerkin method, and the reproducing kernel particle method. These methods employ a moving least-squares approximation method that allows resultant shape functions to be constructed entirely in terms of arbitrarily placed nodes. Meshless discretization presents significant advantages for modeling fracture propagation. By sidestepping remeshing requirements, crack-propagation analysis can be dramatically simplified. Since mesh generation of complex structures can be far more time-consuming and costly than the solution of a discrete set of linear equations, the meshless method provides an attractive alternative to FEM. However, most of the development in meshless methods to date has focused on deterministic problems. Research into probabilistic meshless analysis has not been widespread and is only now gaining attention. Due to inherent uncertainties in loads, material properties and geometry, a probabilistic meshless model is ultimately necessary. Hence, there is considerable interest in developing stochastic meshless methods capable of addressing uncertainties in loads, material properties and geometry, and of predicting the probabilistic response of structures. This paper presents a new stochastic meshless method for predicting probabilistic structural response of cracked structures.

Suggested Citation

  • C. O. Arun & B. N. Rao & M. S. Siva Kumar, 2007. "An Application of Stochastic Meshfree Method in the Field of Fracture Mechanics," Springer Books, in: Computational Mechanics, pages 227-227, Springer.
  • Handle: RePEc:spr:sprchp:978-3-540-75999-7_27
    DOI: 10.1007/978-3-540-75999-7_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-540-75999-7_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.