IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-981-33-6656-5_4.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this book chapter

Explainable Artificial Intelligence Model: Analysis of Neural Network Parameters

In: Applied Advanced Analytics

Author

Listed:
  • Sandip Kumar Pal

    (Cognitive Business and Decision Support, IBM India)

  • Amol A. Bhave

    (Cognitive Business and Decision Support, IBM India)

  • Kingshuk Banerjee

    (Cognitive Computing and Analytics, IBM Global Business Services)

Abstract

In recent years, artificial neural network is becoming a popular technology to extract the extremely complex pattern in the data across different segments of research areas and industrial applications. Most of the artificial intelligence researchers are now focused to build smart and user-friendly applications which can assist humans to make the appropriate decision in the business. The aim to build these applications is mainly to reduce the human errors and minimize influence of individual perceptions in the decision-making process. There is no doubt that this technology will be able to lead to a world where we can enjoy AI-driven applications for our day-to-day life and making some important decisions more accurately. But what if we want to know the explanation and reason behind the decision of AI system. What if we want to understand the most important factors of the decision-making processes of such applications. Due to the intense complexity of inherent structure of AI algorithm, usually researchers define the artificial neural network as “black box” whereas the traditional statistical learning models are more transparent, interpretable and explainable with respect to data and underlying business hypothesis. In this article, we will present TRAnsparent Neural Network (TRANN) by examining and explaining the network structure (model size) using statistical methods. Our aim is to create a framework to derive the right size and relevant connections of network which can explain the data and address the business queries. In this paper, we will be restricting us to analyse the feed-forward neural network model through nonlinear regression model and analyse the parameter properties guided by statistical distribution, information theoretic criteria and simulation technique.

Suggested Citation

  • Sandip Kumar Pal & Amol A. Bhave & Kingshuk Banerjee, 2021. "Explainable Artificial Intelligence Model: Analysis of Neural Network Parameters," Springer Proceedings in Business and Economics, in: Arnab Kumar Laha (ed.), Applied Advanced Analytics, pages 43-51, Springer.
  • Handle: RePEc:spr:prbchp:978-981-33-6656-5_4
    DOI: 10.1007/978-981-33-6656-5_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-981-33-6656-5_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.