IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-37110-4_2.html
   My bibliography  Save this book chapter

Ping-Pong Governance: Token Locking for Enabling Blockchain Self-governance

In: Mathematical Research for Blockchain Economy

Author

Listed:
  • Paul Merrill

    (0Chain LLC
    San José State University)

  • Thomas H. Austin

    (0Chain LLC
    San José State University)

  • Justin Rietz

    (San José State University)

  • Jon Pearce

    (San José State University)

Abstract

Updating blockchain-based protocols remains a significant challenge. If the community does not come to an agreement, a hard-fork can occur, splitting the blockchain’s community. Previous protocols have provided mechanisms to establish community consensus through the protocol itself, but these protocols either facilitate substantial, infrequent updates, or they allow more frequent but only minor changes. This work offers a mechanism that allows clients to vote by locking tokens, making the clients’ tokens temporarily unavailable in exchange for their vote. This design introduces an economic cost to voting, allowing us to measure both breadth and depth of support. Since there is an economic cost to voting, we wish to make non-contentious issues cheap to pass, but still allow the community to establish agreement on larger, more disputatious proposals. We achieve this property by a ping-pong governance model. An issue is tentatively accepted when it achieves enough votes within a fixed period. The proposal then enters a review period, where the opponents must gather enough votes to veto it. The supporters then have their own opportunity to overrule the veto. This process continues with new voting rounds until one side is unable to exceed the needed threshold, settling the issue. Our simulations show that this model allows the community to come to agreement quickly on popular changes, but still come to resolution when the community is more divided. Finally, we define the ideal properties of a blockchain governance protocol, and evaluate different governance protocols under these criteria.

Suggested Citation

  • Paul Merrill & Thomas H. Austin & Justin Rietz & Jon Pearce, 2020. "Ping-Pong Governance: Token Locking for Enabling Blockchain Self-governance," Springer Proceedings in Business and Economics, in: Panos Pardalos & Ilias Kotsireas & Yike Guo & William Knottenbelt (ed.), Mathematical Research for Blockchain Economy, pages 13-29, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-37110-4_2
    DOI: 10.1007/978-3-030-37110-4_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-37110-4_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.