IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-540-85646-7_6.html
   My bibliography  Save this book chapter

Bicriterion Shortest Paths in Stochastic Time-Dependent Networks

In: Multiobjective Programming and Goal Programming

Author

Listed:
  • Lars Relund Nielsen

    (Research Unit of Statistics and Decision Analysis, University of Aarhus)

  • Daniele Pretolani

    (University of Modena and Reggio Emilia)

  • Kim Allan Andersen

    (University of Aarhus)

Abstract

In recent years there has been a growing interest in using stochastic time-dependent (STD) networks as a modelling tool for a number of applications within such areas as transportation and telecommunications. It is known that an optimal routing policy does not necessarily correspond to a path, but rather to a time-adaptive strategy. In some applications, however, it makes good sense to require that the routing policy should correspond to a loopless path in the network, that is, the time-adaptive aspect disappears and a priori route choice is considered. In this paper we consider bicriterion a priori route choice in STD networks, i.e. the problem of finding the set of efficient paths. Both expectation and min—max criteria are considered and a solution method based on the two-phase method is devised. Experimental results reveal that the full set of efficient solutions can be determined on rather large test instances, which is in contrast to the time-adaptive case.

Suggested Citation

  • Lars Relund Nielsen & Daniele Pretolani & Kim Allan Andersen, 2009. "Bicriterion Shortest Paths in Stochastic Time-Dependent Networks," Lecture Notes in Economics and Mathematical Systems, in: Vincent Barichard & Matthias Ehrgott & Xavier Gandibleux & Vincent T'Kindt (ed.), Multiobjective Programming and Goal Programming, pages 57-67, Springer.
  • Handle: RePEc:spr:lnechp:978-3-540-85646-7_6
    DOI: 10.1007/978-3-540-85646-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2014. "Ranking paths in stochastic time-dependent networks," European Journal of Operational Research, Elsevier, vol. 236(3), pages 903-914.
    2. Lars Relund Nielsen & Erik Jørgensen & Søren Højsgaard, 2011. "Embedding a state space model into a Markov decision process," Annals of Operations Research, Springer, vol. 190(1), pages 289-309, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-540-85646-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.