Robust Discrete Optimization Under Discrete and Interval Uncertainty: A Survey
In: Robustness Analysis in Decision Aiding, Optimization, and Analytics
Author
Abstract
Suggested Citation
DOI: 10.1007/978-3-319-33121-8_6
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Amadeu A. Coco & Andréa Cynthia Santos & Thiago F. Noronha, 2022. "Robust min-max regret covering problems," Computational Optimization and Applications, Springer, vol. 83(1), pages 111-141, September.
- Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Recoverable robust representatives selection problems with discrete budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 303(2), pages 567-580.
- Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
- Goerigk, Marc & Khosravi, Mohammad, 2023. "Optimal scenario reduction for one- and two-stage robust optimization with discrete uncertainty in the objective," European Journal of Operational Research, Elsevier, vol. 310(2), pages 529-551.
- Alejandro Crema, 2020. "Min max min robust (relative) regret combinatorial optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(2), pages 249-283, October.
- Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Two-Stage robust optimization problems with two-stage uncertainty," European Journal of Operational Research, Elsevier, vol. 302(1), pages 62-78.
- Baak, Werner & Goerigk, Marc & Hartisch, Michael, 2024. "A preference elicitation approach for the ordered weighted averaging criterion using solution choice observations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1098-1110.
- Ana Klobučar & Robert Manger, 2020. "Solving Robust Variants of the Maximum Weighted Independent Set Problem on Trees," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
- Büsing, Christina & Comis, Martin & Schmidt, Eva & Streicher, Manuel, 2021. "Robust strategic planning for mobile medical units with steerable and unsteerable demands," European Journal of Operational Research, Elsevier, vol. 295(1), pages 34-50.
More about this item
Keywords
Interval Uncertainty Representation; Minmax Regret; Minmax Problem; Recoverable Robustness; Fully Polynomial Time Approximation Scheme (FPTAS);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-33121-8_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.