IDEAS home Printed from https://ideas.repec.org/h/spr/conchp/978-3-7908-2050-8_3.html

Time Dependent Relative Risk Aversion

In: Risk Assessment

Author

Listed:
  • Enzo Giacomini

    (Humboldt-University of Berlin)

  • Michael Handel

    (Dr. Nagler & Company GmbH)

  • Wolfgang K. Härdle

    (Humboldt-University of Berlin)

Abstract

Risk management has developed in the recent decades to be one of the most fundamental issues in quantitative finance. Various models are being developed and applied by researchers as well as financial institutions. By modeling price fluctuations of assets in a portfolio, the loss can be estimated using statistical methods. Different measures of risk, such as standard deviation of returns or confidence interval Value at Risk, have been suggested. These measures are based on the probability distributions of assets' returns extracted from the data-generating process of the asset. However, an actual one dollar loss is not always valued in practice as a one dollar loss. Purely statistical estimation of loss has the disadvantage of ignoring the circumstances of the loss. Hence the notion of an investor's utility has been introduced. Arrow [2] and [10] were the first to introduce elementary securities to formalize economics of uncertainty. The so-called Arrow-Debreu securities are the starting point of all modern financial asset pricing theories. Arrow—Debreu securities entitle their holder to a payoff of 1$ in one specific state of the world, and 0 in all other states of the world. The price of such a security is determined by the market, on which it is tradable, and is subsequent to a supply and demand equilibrium. Moreover, these prices contain information about investors' preferences due to their dependence on the conditional probabilities of the state of the world at maturity and due to the imposition of market-clearing and general equilibrium conditions. The prices reflect investors' beliefs about the future, and the fact that they are priced differently in different states of the world implies, that a one-dollar gain is not always worth the same, in fact its value is exactly the price of the security.

Suggested Citation

  • Enzo Giacomini & Michael Handel & Wolfgang K. Härdle, 2009. "Time Dependent Relative Risk Aversion," Contributions to Economics, in: Georg Bol & Svetlozar T. Rachev & Reinhold Würth (ed.), Risk Assessment, pages 15-46, Springer.
  • Handle: RePEc:spr:conchp:978-3-7908-2050-8_3
    DOI: 10.1007/978-3-7908-2050-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. repec:hum:wpaper:sfb649dp2008-001 is not listed on IDEAS
    3. Bedoui, Rihab & Hamdi, Haykel, 2015. "Option-implied risk aversion estimation," The Journal of Economic Asymmetries, Elsevier, vol. 12(2), pages 142-152.
    4. repec:hum:wpaper:sfb649dp2007-027 is not listed on IDEAS

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:conchp:978-3-7908-2050-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.