IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/186767.html
   My bibliography  Save this book chapter

Fault Diagnosis Techniques for a Wind Turbine System

In: Fault Detection, Diagnosis and Prognosis

Author

Listed:
  • Silvio Simani
  • Paolo Castaldi

Abstract

The fault diagnosis and prognosis of wind turbine systems represent a challenging issue, thus justifying the research topics developed in this work with application to safety-critical systems. Therefore, this chapter addresses these research issues and demonstrates viable techniques of fault diagnosis and condition monitoring. To this aim, the design of the so-called fault detector relies on its estimate, which involves data-driven methods, as they result effective methods for managing partial information of the system dynamics, together with errors, model-reality mismatch and disturbance effects. In particular, the considered data-driven strategies use fuzzy systems and neural networks, which are employed to establish non-linear dynamic links between measurements and faults. The selected prototypes are based on non-linear autoregressive with exogenous input descriptions, since they are able to approximate non-linear dynamic functions with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis schemes are verified via a high-fidelity simulator, which describes the normal and the faulty behaviour of a wind turbine plant. Finally, the robustness and the reliability features of the proposed methods are validated in the presence of uncertainty and disturbance implemented in the wind turbine simulator.

Suggested Citation

  • Silvio Simani & Paolo Castaldi, 2020. "Fault Diagnosis Techniques for a Wind Turbine System," Chapters, in: Fausto Pedro Garcia Marquez (ed.), Fault Detection, Diagnosis and Prognosis, IntechOpen.
  • Handle: RePEc:ito:pchaps:186767
    DOI: 10.5772/intechopen.83810
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/65244
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.83810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
    2. Jesús Enrique Sierra-García & Matilde Santos, 2021. "Lookup Table and Neural Network Hybrid Strategy for Wind Turbine Pitch Control," Sustainability, MDPI, vol. 13(6), pages 1-17, March.

    More about this item

    Keywords

    fault diagnosis; analytical redundancy; fuzzy prototypes; neural networks; diagnostic residuals; fault reconstruction; wind turbine simulator;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:186767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.