IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/129660.html
   My bibliography  Save this book chapter

Design of Experiment Approach in the Industrial Gas Carburizing Process

In: Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes

Author

Listed:
  • Muhammad Atiq Ur Rehman
  • Muhammad Azeem Munawar
  • Qaisar Nawaz
  • Muhammad Yousaf Anwar

Abstract

Carburized samples were prepared under different sets of conditions at Millat Equipment Limited, Lahore, Pakistan, using continuous carburizing furnace under a reducing atmosphere. The gas carburizing process parameters were determined by the Taguchi design of experiment (DoE), an orthogonal array of L9 type with the mixed level of control factors. The key process parameters in gas carburizing process such as delay quenching interval, hardening temperature, and soaking time in oil were optimized in terms of core hardness, effective case depth (ECD), and surface hardness. DoE approach elucidated that the best results in terms of core hardness are A2 (delay quenching for 60 seconds), B2 (hardening temperature of 800°C), and C2 (soaking in quenching oil for 300 seconds). However, the best results in terms of ECD were A1 (delay quenching for 45 seconds), B3 (hardening temperature of 820°C), and C1 (soaking in quenching oil for 180 seconds). In order to choose the optimized parameters from the results given by DoE, microscopic analysis was conducted. Microscopic analysis showed coarse bainitic structure in core and tempered martensite at the surface of the samples processed at A2 (delay quenching for 60 seconds), B2 (hardening temperature of 800°C), and C1 (soaking in quenching oil for 180 seconds) compared to the other process conditions (A1, B3, and C1), which shows fine bainitic structure at core and relatively higher amount of retained austenite at the surface. Finally, defect per million opportunities (DPMO) model exhibited that the samples produced from the optimized set of parameters (A2, B2, and C1) are highly reproducible, gaining DPMO of 83 parts per million (PPM).

Suggested Citation

  • Muhammad Atiq Ur Rehman & Muhammad Azeem Munawar & Qaisar Nawaz & Muhammad Yousaf Anwar, 2018. "Design of Experiment Approach in the Industrial Gas Carburizing Process," Chapters, in: Valter Silva (ed.), Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes, IntechOpen.
  • Handle: RePEc:ito:pchaps:129660
    DOI: 10.5772/intechopen.72822
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/58550
    Download Restriction: no

    File URL: https://libkey.io/10.5772/intechopen.72822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    gas carburizing; core hardness; design of experiment; defect per million opportunities; effective case depth;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:129660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.