IDEAS home Printed from

NBSTRAT: Stata module to estimate Negative Binomial with Endogenous Stratification


  • Joseph Hilbe


  • Roberto Martinez-Espineira

    (St. Francis Xavier University, Nova Scotia)


nbstrat fits a maximum-likelihood negative binomial with endogenous stratification regression model of depvar on indepvars, where depvar is a nonnegative count variable > 0. lnalpha is parameterized by the predictors entered within its parentheses. gnbstrat simultaneously accommodates three features of on-site samples dealing with count data: overdispersion relative to the Poisson; truncation at zero, and endogenous stratification due to oversampling of frequent users of the site. Endogenous stratification occurs when the likelihood of sampling observations is dependent on a choice made by the subject of study which is in itself the dependent variable. For example, in recreational demand analysis, if an on-site survey is conducted, one is more likely to interview subjects who visit the site more times per week and ask how many times they visit, hence the endogeneity. Also patients who visit the doctor more frequently are also more likely to be sampled if the survey is conducted at the clinic, etc.

Suggested Citation

  • Joseph Hilbe & Roberto Martinez-Espineira, 2005. "NBSTRAT: Stata module to estimate Negative Binomial with Endogenous Stratification," Statistical Software Components S456414, Boston College Department of Economics.
  • Handle: RePEc:boc:bocode:s456414
    Note: This module should be installed from within Stata by typing "ssc install gnbstrat". Windows users should not attempt to download these files with a web browser.

    Download full text from publisher

    File URL:
    File Function: program code
    Download Restriction: no

    File URL:
    File Function: program code
    Download Restriction: no

    File URL:
    File Function: help file
    Download Restriction: no


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocode:s456414. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.