IDEAS home Printed from https://ideas.repec.org/b/zbw/tuisbw/12007.html
   My bibliography  Save this book

Graphische Verfahren zur Maschinenbelegungsplanung: Lösungsansätze für Probleme mit zwei Aufträgen und mehrdimensionale Erweiterungen

Author

Listed:
  • Souren, Rainer
  • Gerlach, Kurt

Abstract

Der Beitrag stellt zunächst verschiedene graphische Verfahren zur Maschinenbelegungsplanung bei 2 Aufträgen vor, die wegen ihrer Einfachheit und didaktischen Eignung in der Ausbildung von besonderem Interesse sind. Ausgangspunkt der Überlegungen ist das Verfahren von Akers (1956) und darauf aufbauende Erweiterungen. Anschließend werden Überlegungen zum Einsatz der Verfahren in mehrdimensionalen Problemen präsentiert und insbesondere Dekompositionsmöglichkeiten in 2-dimensionale Probleme diskutiert. Ausgehend von den Schwachpunkten der herkömmlichen Verfahren für die Lösung mehrdimensionaler Probleme wird eine eigene Lösungsidee präsentiert und abschließend kritisch reflektiert.

Suggested Citation

  • Souren, Rainer & Gerlach, Kurt, 2007. "Graphische Verfahren zur Maschinenbelegungsplanung: Lösungsansätze für Probleme mit zwei Aufträgen und mehrdimensionale Erweiterungen," Ilmenauer Schriften zur Betriebswirtschaftslehre, Technische Universität Ilmenau, Institut für Betriebswirtschaftslehre, volume 1, number 12007, September.
  • Handle: RePEc:zbw:tuisbw:12007
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/55696/1/661602915.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Włodzimierz Szwarc, 1960. "Solution of the Akers-Friedman Scheduling Problem," Operations Research, INFORMS, vol. 8(6), pages 782-788, December.
    2. William W. Hardgrave & George L. Nemhauser, 1963. "A Geometric Model and a Graphical Algorithm for a Sequencing Problem," Operations Research, INFORMS, vol. 11(6), pages 889-900, December.
    3. Sheldon B. Akers, 1956. "Letter to the Editor---A Graphical Approach to Production Scheduling Problems," Operations Research, INFORMS, vol. 4(2), pages 244-245, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    2. Peter Brucker & Yu Sotskov & Frank Werner, 2007. "Complexity of shop-scheduling problems with fixed number of jobs: a survey," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 461-481, June.
    3. Agnetis, Alessandro & Kellerer, Hans & Nicosia, Gaia & Pacifici, Andrea, 2012. "Parallel dedicated machines scheduling with chain precedence constraints," European Journal of Operational Research, Elsevier, vol. 221(2), pages 296-305.
    4. Yuri N. Sotskov, 2020. "Mixed Graph Colorings: A Historical Review," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
    5. Y N Sotskov & A Allahverdi & T-C Lai, 2004. "Flowshop scheduling problem to minimize total completion time with random and bounded processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 277-286, March.
    6. A. Agnetis & P.B. Mirchandani & D. Pacciarelli & A. Pacifici, 2000. "Nondominated Schedules for a Job-Shop with Two Competing Users," Computational and Mathematical Organization Theory, Springer, vol. 6(2), pages 191-217, July.
    7. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    8. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    9. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    10. Shakhlevich, Natalia V. & Sotskov, Yuri N. & Werner, Frank, 2000. "Complexity of mixed shop scheduling problems: A survey," European Journal of Operational Research, Elsevier, vol. 120(2), pages 343-351, January.
    11. Mati, Yazid & Xie, Xiaolan, 2004. "The complexity of two-job shop problems with multi-purpose unrelated machines," European Journal of Operational Research, Elsevier, vol. 152(1), pages 159-169, January.
    12. Nikhil Bansal & Tracy Kimbrel & Maxim Sviridenko, 2006. "Job Shop Scheduling with Unit Processing Times," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 381-389, May.
    13. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    14. Rossit, Daniel A. & Vásquez, Óscar C. & Tohmé, Fernando & Frutos, Mariano & Safe, Martín D., 2021. "A combinatorial analysis of the permutation and non-permutation flow shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 289(3), pages 841-854.
    15. Peter Damaschke, 2019. "Parameterized Mixed Graph Coloring," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 362-374, August.
    16. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    17. S. Sevastyanov & D. Chemisova & I. Chernykh, 2014. "On some properties of optimal schedules in the job shop problem with preemption and an arbitrary regular criterion," Annals of Operations Research, Springer, vol. 213(1), pages 253-270, February.
    18. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2015. "Single machine scheduling with two competing agents and equal job processing times," European Journal of Operational Research, Elsevier, vol. 244(1), pages 86-99.
    19. Guinet, Alain, 2000. "Efficiency of reductions of job-shop to flow-shop problems," European Journal of Operational Research, Elsevier, vol. 125(3), pages 469-485, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:tuisbw:12007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwtuide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.