IDEAS home Printed from https://ideas.repec.org/a/zib/zbtaec/v5y2024i2p97-102.html
   My bibliography  Save this article

Assessing The Effect Of Biochar On Adsorption Efficiency Of Heavy Metals In Contaminated Soil Solution

Author

Listed:
  • Musa V. H

    (Department of Soil Science, College of Agronomy, Joseph Sarwuan Tarka University, Benue State.)

  • Dawaki M.U

    (Department of Soil Science, Faculty of Agriculture, Bayero University, Kano, Kano State.)

Abstract

Global food production, supply chains, and food security are increasingly threatened by the burgeoning human population and the dwindling availability of arable land, exacerbating their vulnerability to both natural disasters and anthropogenic disturbances. Crop production hinges on a myriad of species interactions, encompassing both beneficial and detrimental organisms. The large-scale identification of these species within food production systems presents a formidable challenge, yet precise identification is paramount for accurately cataloging biodiversity and monitoring ecological changes. Enhancing our capabilities in detecting emergent pests and diseases, assessing soil and pollinator diversity, and collecting data to inform innovative management strategies such as targeted pesticide and fertilizer applications are critical components of this endeavor. Environmental DNA (eDNA) has emerged as a potent tool for the rapid and precise identification of individual organisms and species assemblages across various matrices, including air and soil. This paper explores the application of eDNA for the surveillance of agricultural environments and pest management. The scope of this review encompasses the utilization of eDNA technology in agricultural systems, focusing on its application in pest control and biodiversity monitoring. Despite the promising capabilities of eDNA, its implementation in pest management within agricultural systems remains underutilized, particularly in regions where food security is most at risk. A significant gap exists in the application of eDNA-based monitoring studies in food production systems globally, with a marked deficiency in developing nations. The objectives of this review are to evaluate the current use of eDNA in pest control and agricultural biodiversity monitoring, identify existing limitations and propose potential solutions to enhance eDNA applications, and highlight the need for increased adoption of eDNA technologies in underrepresented regions to improve global food security. Our comprehensive analysis underscores the efficacy of eDNA-based monitoring in pest control, delivering precise taxonomic identifications. Notably, 60% of eDNA research is concentrated on soil and plant substrates, predominantly focusing on bacterial and insect identification, with European studies accounting for a significant proportion (42%). There is a notable paucity of eDNA-based monitoring studies in numerous global food production systems, particularly within developing nations where food security is most precarious.

Suggested Citation

  • Musa V. H & Dawaki M.U, 2024. "Assessing The Effect Of Biochar On Adsorption Efficiency Of Heavy Metals In Contaminated Soil Solution," Tropical Agroecosystems (TAEC), Zibeline International Publishing, vol. 5(2), pages 97-102, October.
  • Handle: RePEc:zib:zbtaec:v:5:y:2024:i:2:p:97-102
    DOI: 10.26480/taec.02.2024.97.102
    as

    Download full text from publisher

    File URL: https://taec.com.my/archives/2taec2024/2taec2024-97-102.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/taec.02.2024.97.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hassanli, Ali Morad & Ebrahimizadeh, Mohammad Ali & Beecham, Simon, 2009. "The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region," Agricultural Water Management, Elsevier, vol. 96(1), pages 93-99, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gudeta Genemo & Habtamu Bedane & Eshetu Mekonen, 2023. "On-farm evaluation of drip irrigation system on coffee production in Western Oromia, Ethiopia," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 13(01), June.
    2. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
    3. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Srinivasan, M.S. & Measures, Richard & Muller, Carla & Neal, Mark & Rajanayaka, Channa & Shankar, Ude & Elley, Graham, 2021. "Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool," Agricultural Water Management, Elsevier, vol. 258(C).
    5. E. Hernandez & Venkatesh Uddameri, 2010. "Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4589-4612, December.
    6. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    7. Al-Ghobari, Hussein M. & Dewidar, Ahmed Z., 2018. "Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions," Agricultural Water Management, Elsevier, vol. 209(C), pages 55-61.
    8. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Bengü Everest, 2021. "Farmers’ adaptation to climate-smart agriculture (CSA) in NW Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4215-4235, March.
    10. Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors," Agricultural Water Management, Elsevier, vol. 271(C).
    11. Gina Lopez & Hannah Beate Kolem & Amit Kumar Srivastava & Thomas Gaiser & Frank Ewert, 2019. "A Model-Based Estimation of Resource Use Efficiencies in Maize Production in Nigeria," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    12. Hassanli, Ali Morad & Ahmadirad, Shahram & Beecham, Simon, 2010. "Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(2), pages 357-362, February.
    13. Mishari A. Alnaim & Magdy S. Mohamed & Maged Mohammed & Muhammad Munir, 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm," Agriculture, MDPI, vol. 12(3), pages 1-21, February.
    14. Shuang Liu & Jianye Li & Xingyi Zhang, 2022. "Simulations of Soil Water and Heat Processes for No Tillage and Conventional Tillage Systems in Mollisols of China," Land, MDPI, vol. 11(3), pages 1-17, March.
    15. Jianping Yang & Chunping Tan & Shijin Wang & Shengxia Wang & Yuan Yang & Hongju Chen, 2015. "Drought Adaptation in the Ningxia Hui Autonomous Region, China: Actions, Planning, Pathways and Barriers," Sustainability, MDPI, vol. 7(11), pages 1-28, November.
    16. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    17. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    18. Franco-Luesma, Samuel & Cavero, José & Álvaro-Fuentes, Jorge, 2025. "Relevance of the irrigation and soil management system to optimize maize crop production under semiarid Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 307(C).
    19. Aydinsakir, Koksal & Buyuktas, Dursun & Dinç, Nazmi & Erdurmus, Cengiz & Bayram, Edip & Yegin, Arzu Bayir, 2021. "Yield and bioethanol productivity of sorghum under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Yerli, Caner & Sahin, Ustun & Ors, Selda & Kiziloglu, Fatih Mehmet, 2023. "Improvement of water and crop productivity of silage maize by irrigation with different levels of recycled wastewater under conventional and zero tillage conditions," Agricultural Water Management, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbtaec:v:5:y:2024:i:2:p:97-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://taec.com.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.