IDEAS home Printed from https://ideas.repec.org/a/zib/zbacmy/v8y2024i2p114-119.html
   My bibliography  Save this article

Comparison Of Wet Chemistry And Dry Combustion Methods For Organic Carbon And Sulfur Determination In Soils Of Nigeria’S Savanna

Author

Listed:
  • Habib, D. W

    (Department of Soil Science, Bayero University, Kano, Kano State)

  • Idris F. B

    (Department of Soil Science, Bayero University, Kano, Kano State)

  • Mustapha A. A.

    (Department of Soil Science, Bayero University, Kano, Kano State)

  • Abdurrahman B. L

    (Department of Soil Science, Bayero University, Kano, Kano State)

Abstract

The study of physicochemical properties of soil is essential for evaluating nutrient status and other characteristics that regulate plant growth. Soil scientists in Nigeria commonly use wet chemistry and dry combustion methods to determine the organic carbon and sulfur content of soil. However, there is insufficient information on the efficiency and limitations of these methods for academic purposes. A laboratory experiment was conducted in 2019, using 60 topsoil samples from the Sudan savanna and northern Guinea savanna agroecology of Nigeria, to compare the results of wet and dry methods for determining organic carbon and sulfur content. The results showed that the CHNS/O analyzer provided higher accuracy and mean values for organic carbon determination, while wet chemistry revealed higher mean and R2 values for sulfur determination. The use of the CHNS/O analyzer is recommended due to its accuracy and safety. Future studies are needed to further evaluate the relationship between these two methods.

Suggested Citation

  • Habib, D. W & Idris F. B & Mustapha A. A. & Abdurrahman B. L, 2024. "Comparison Of Wet Chemistry And Dry Combustion Methods For Organic Carbon And Sulfur Determination In Soils Of Nigeria’S Savanna," Acta Chemica Malaysia (ACMY), Zibeline International Publishing, vol. 8(2), pages 114-119, January.
  • Handle: RePEc:zib:zbacmy:v:8:y:2024:i:2:p:114-119
    DOI: 10.26480/acmy.02.2024.114.119
    as

    Download full text from publisher

    File URL: https://www.actachemicamalaysia.com/archives/2acmy2024/2acmy2024-114-119.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/acmy.02.2024.114.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Lange & Nico Eisenhauer & Carlos A. Sierra & Holger Bessler & Christoph Engels & Robert I. Griffiths & Perla G. Mellado-Vázquez & Ashish A. Malik & Jacques Roy & Stefan Scheu & Sibylle Steinbei, 2015. "Plant diversity increases soil microbial activity and soil carbon storage," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Li & Alexandra N. Kravchenko & Alison Cupples & Andrey K. Guber & Yakov Kuzyakov & G. Philip Robertson & Evgenia Blagodatskaya, 2024. "Composition and metabolism of microbial communities in soil pores," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Qingshui Yu & Chenqi He & Mark A. Anthony & Bernhard Schmid & Arthur Gessler & Chen Yang & Danhua Zhang & Xiaofeng Ni & Yuhao Feng & Jiangling Zhu & Biao Zhu & Shaopeng Wang & Chengjun Ji & Zhiyao Tan, 2024. "Decoupled responses of plants and soil biota to global change across the world’s land ecosystems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Friedrich Scherzinger & Martin Schädler & Thomas Reitz & Rui Yin & Harald Auge & Ines Merbach & Christiane Roscher & W Stanley Harpole & Evgenia Blagodatskaya & Julia Siebert & Marcel Ciobanu & Fabian, 2024. "Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Brèteau-Amores, Sandrine & Yousefpour, Rasoul & Hanewinkel, Marc & Fortin, Mathieu, 2023. "Forest adaptation strategies to reconcile timber production and carbon sequestration objectives under multiple risks of extreme drought and windstorm events," Ecological Economics, Elsevier, vol. 212(C).
    5. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Xinli Chen & Peter B. Reich & Anthony R. Taylor & Zhengfeng An & Scott X. Chang, 2024. "Resource availability enhances positive tree functional diversity effects on carbon and nitrogen accrual in natural forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Gerrit Angst & Kevin E. Mueller & Michael J. Castellano & Cordula Vogel & Martin Wiesmeier & Carsten W. Mueller, 2023. "Unlocking complex soil systems as carbon sinks: multi-pool management as the key," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Marie Spohn & Sumanta Bagchi & Lori A. Biederman & Elizabeth T. Borer & Kari Anne Bråthen & Miguel N. Bugalho & Maria C. Caldeira & Jane A. Catford & Scott L. Collins & Nico Eisenhauer & Nicole Hagena, 2023. "The positive effect of plant diversity on soil carbon depends on climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Cameron Wagg & Christiane Roscher & Alexandra Weigelt & Anja Vogel & Anne Ebeling & Enrica Luca & Anna Roeder & Clemens Kleinspehn & Vicky M. Temperton & Sebastian T. Meyer & Michael Scherer-Lorenzen , 2022. "Biodiversity–stability relationships strengthen over time in a long-term grassland experiment," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbacmy:v:8:y:2024:i:2:p:114-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://www.actachemicamalaysia.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.