IDEAS home Printed from
   My bibliography  Save this article

A control chart using belief information for a gamma distribution


  • Muhammad Aslam
  • Nasrullah Khan
  • Chi-Hyuck Jun


The design of a control chart has been presented using a belief estimator by assuming that the quantitative characteristic of interest follows the gamma distribution. The authors present the structure of the proposed chart and derive the average run lengths for in-control and a shifted process. The average run lengths for various specified parameters have been reported. The efficiency of the proposed chart has been compared to existing control charts. The application of the proposed chart is illustrated with the help of simulated data.

Suggested Citation

  • Muhammad Aslam & Nasrullah Khan & Chi-Hyuck Jun, 2016. "A control chart using belief information for a gamma distribution," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(4), pages 5-19.
  • Handle: RePEc:wut:journl:v:4:y:2016:p:5-19:id:1233
    DOI: 10.5277/ord160401

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    References listed on IDEAS

    1. Muhammad Riaz, 2008. "Monitoring process mean level using auxiliary information," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(4), pages 458-481, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Riaz & Ronald Does, 2009. "A process variability control chart," Computational Statistics, Springer, vol. 24(2), pages 345-368, May.
    2. Shahid Hussain & Sun Mei & Muhammad Riaz & Saddam Akber Abbasi, 2020. "On Phase-I Monitoring of Process Location Parameter with Auxiliary Information-Based Median Control Charts," Mathematics, MDPI, vol. 8(5), pages 1-21, May.
    3. Jen-Hsiang Chen & Shin-Li Lu, 2022. "Economic-Statistical Performance of Auxiliary Information-Based Maximum EWMA Charts for Monitoring Manufacturing Processes," Mathematics, MDPI, vol. 10(13), pages 1-15, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:4:y:2016:p:5-19:id:1233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.