IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v10y2007i02ns0219024907004160.html
   My bibliography  Save this article

Valuation Of Guaranteed Annuity Options In Affine Term Structure Models

Author

Listed:
  • CHI CHIU CHU

    (Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China)

  • YUE KUEN KWOK

    (Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China)

Abstract

We propose three analytic approximation methods for numerical valuation of the guaranteed annuity options in deferred annuity pension policies. The approximation methods include the stochastic duration approach, Edgeworth expansion, and analytic approximation in affine diffusions. The payoff structure in the annuity policies is similar to a quanto call option written on a coupon-bearing bond. To circumvent the limitations of the one-factor interest rate model, we model the interest rate dynamics by a two-factor affine interest rate term structure model. The numerical accuracy and the computational efficiency of these approximation methods are analyzed. We also investigate the value sensitivity of the guaranteed annuity option with respect to different parameters in the pricing model.

Suggested Citation

  • Chi Chiu Chu & Yue Kuen Kwok, 2007. "Valuation Of Guaranteed Annuity Options In Affine Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 363-387.
  • Handle: RePEc:wsi:ijtafx:v:10:y:2007:i:02:n:s0219024907004160
    DOI: 10.1142/S0219024907004160
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024907004160
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024907004160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Haastrecht, Alexander & Plat, Richard & Pelsser, Antoon, 2010. "Valuation of guaranteed annuity options using a stochastic volatility model for equity prices," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 266-277, December.
    2. Eckhard Platen, 2009. "Real World Pricing of Long Term Contracts," Research Paper Series 262, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. João Pedro Vidal Nunes & Pedro Miguel Silva Prazeres, 2014. "Pricing Swaptions Under Multifactor Gaussian Hjm Models," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 762-789, October.
    4. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming & Tenyakov, Anton, 2015. "Mortality modelling with regime-switching for the valuation of a guaranteed annuity option," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 108-120.
    5. Roman Horsky & Tilman Sayer, 2015. "Joining The Heston And A Three-Factor Short Rate Model: A Closed-Form Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-17, December.
    6. Deelstra, Griselda & Rayée, Grégory, 2013. "Pricing Variable Annuity Guarantees in a local volatility framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 650-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:10:y:2007:i:02:n:s0219024907004160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.