IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v18y1998i5p585-602.html
   My bibliography  Save this article

Sample Timing and Mathematical Considerations for Modeling Breath Elimination of Volatile Organic Compounds

Author

Listed:
  • Joachim D. Pleil
  • Andrew B. Lindstrom

Abstract

Real‐world exposure measurements are a necessary ingredient for subsequent detailed study of the risks from an environmental pollutant. For volatile organic compounds, researchers are applying exhaled breath analysis and the time dependence of concentrations as a noninvasive indicator of exposure, dose, and blood levels. To optimize the acquisition of such data, samples must be collected in a time frame suited to the needs of the mathematical model, within physical limitations of the equipment and subjects, and within logistical constraints. Additionally, one must consider the impact of measurement error on the eventual extraction of biologically and physiologically relevant parameters. Given a particular mathematical model for the elimination kinetics (in this case a very simple pharmacokinetic model based upon a multitenn exponential decay function that has been shown to fit real‐world data extremely well), we investigated the effects on synthetic data caused by sample timing, random measurement error, and number of terms included in the model. This information generated a series of conditions for collecting samples and performing analyses dependent upon the eventual informational needs, and it provided an estimate of error associated with various choices and compromises. Though the work was geared specifically toward breath sampling, it is equally applicable to direct blood measurements in optimizing sampling strategy and improving the exposure assessment process.

Suggested Citation

  • Joachim D. Pleil & Andrew B. Lindstrom, 1998. "Sample Timing and Mathematical Considerations for Modeling Breath Elimination of Volatile Organic Compounds," Risk Analysis, John Wiley & Sons, vol. 18(5), pages 585-602, October.
  • Handle: RePEc:wly:riskan:v:18:y:1998:i:5:p:585-602
    DOI: 10.1111/j.1539-6924.1998.tb00372.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1998.tb00372.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1998.tb00372.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wan K. Jo & Clifford P. Weisel & Paul J. Lioy, 1990. "Chloroform Exposure and the Health Risk Associated with Multiple Uses of Chlorinated Tap Water," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 581-585, December.
    2. Robert L. Chinery & A. Kevin Gleason, 1993. "A Compartmental Model for the Prediction of Breath Concentration and Absorbed Dose of Chloroform After Exposure While Showering," Risk Analysis, John Wiley & Sons, vol. 13(1), pages 51-62, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad S. Islam & Luhua Zhao & Joseph Zhou & Lilly Dong & James N. McDougal & Gordon L. Flynn, 1996. "Systemic Uptake and Clearance of Chloroform by Hairless Rats Following Dermal Exposure. I. Brief Exposure to Aqueous Solutions," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 349-357, June.
    2. Kenneth T. Bogen, 2013. "Dermal Uptake of 18 Dilute Aqueous Chemicals: In Vivo Disappearance‐Method Measures Greatly Exceed In Vitro‐Based Predictions," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1334-1352, July.
    3. A. Roy & C. P. Weisel & P. J. Lioy & P. G. Georgopoulos, 1996. "A Distributed Parameter Physiologically‐Based Pharmacokinetic Model for Dermal and Inhalation Exposure to Volatile Organic Compounds," Risk Analysis, John Wiley & Sons, vol. 16(2), pages 147-160, April.
    4. Mathieu Valcke & Kannan Krishnan, 2010. "An Assessment of the Interindividual Variability of Internal Dosimetry during Multi-Route Exposure to Drinking Water Contaminants," IJERPH, MDPI, vol. 7(11), pages 1-21, November.
    5. Clifford P. Weisel & Wei Jie Chen, 1994. "Exposure to Chlorination By‐Products from Hot Water Uses," Risk Analysis, John Wiley & Sons, vol. 14(1), pages 101-106, February.
    6. David R. Mattie & John H. Grabau & James N. McDougal, 1994. "Significance of the Dermal Route of Exposure to Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 277-284, June.
    7. Mohammad S. Islam & Luhua Zhao & James N. McDougal & Gordon L. Flynn, 1995. "Uptake of Chloroform by Skin During Short Exposures to Contaminated Water," Risk Analysis, John Wiley & Sons, vol. 15(3), pages 343-352, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:18:y:1998:i:5:p:585-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.