IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v8y1997i1p23-44.html
   My bibliography  Save this article

Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic

Author

Listed:
  • T. E. Osterkamp
  • V. E. Romanovsky

Abstract

Upward freezing from the bottom of the active layer started at the end of August or beginning of September when the ground surface temperature was above 0°C. About one‐third of the active layer froze upwards at the West Dock, Deadhorse and Franklin Bluffs sites. Temperatures were warmer than −1°C at the maximum depth of the active layer 20 days after the freeze‐up date with the temperature maximum near the base of the active layer. This behaviour was caused by unfrozen water in the active layer and near‐surface permafrost. A numerical model was used to determine the most appropriate unfrozen water content curves at each site. Modelling also indicates that a layer with increased unfrozen water content existed during cooling of the active layer following freeze‐up and during warming prior to thawing. At the Deadhorse site, this layer continued from the ground surface to a depth of 0.3 m in 1987 and 0.36 m in 1991. For Franklin Bluffs in 1987, for West Dock in 1988, and for Barrow in 1993 the thickness of this layer was 0.1 m and it was located between 0.2 and 0.3 m at Franklin Bluffs, between 0.15 and 0.25 m at West Dock, and between 0.21 and 0.31 m at Barrow. The unfrozen water contents for these layers were relatively large at low temperatures. Analytical calculations of the apparent thermal diffusivity showed that its observed variations with temperature were due to the latent heat effects of the unfrozen water. Microbial activity and trace gas evolution during the winter may be influenced by the presence of the unfrozen water. © 1997 John Wiley & Sons, Ltd. Le gel vers le haut depuis la base de la couche active a commencé à la fin d'août ou au début de septembre quand la température de la surface du sol était supérieure à 0°C. Environ un tiers de la couche active a gelé depuis la base dans les sites de West Dock, Deadhorse et Franklin Bluffs. Des températures étaient plus élevées que −1°C a la profoundeur maximum de la couche active 20 jours après la date du regel, et la température maximum se trouvait près de la base de la couche active. Ce comportement résulte de la présence d'eau non gelée dans la couche active et dans le pergélisol proche. Un modèle numérique a été utilisé pour déterminer les courbes les plus appropriées du contenu en eau non gelée en chaque endroit. La modélisation indique aussi qu'une couche avec des contenus accrus en eau non gelée a existé pendant le regel de la couche active et pendant le réchauffement antérieur au dégel. Au site de Deadhorse, cette couche a été continue depuis la surface du sol jusqu'à la profondeur de 0.3 m en 1987 et 0.36 m en 1991. Au site de Franklin Bluffs en 1987, à celui de West Dock en 1988 et à celui de Barrow en 1993, l'épaisseur de cette couche était de 0.1 m et était localisée entre 0.2 et 0.3 m à Franklin Bluffs, entre 0.15 et 0.25 à West Dock et entre 0.21 et 0.31 à Barrow. Les contenus de ces couches en eau non gelée etaient relativement élevés aux basses températures. Des calculs analytiques de la diffusivité thermique apparente ont montré que les variations observées avec la température étaient dues à la chaleur latente de fusion de l'eau non gelée. L'activité microbiologique et le déplacement de solutions et de gaz pendant l'hiver peuvent être influencées par la présence d'eau non gelée. © 1997 John Wiley & Sons, Ltd.

Suggested Citation

  • T. E. Osterkamp & V. E. Romanovsky, 1997. "Freezing of the Active Layer on the Coastal Plain of the Alaskan Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 8(1), pages 23-44, January.
  • Handle: RePEc:wly:perpro:v:8:y:1997:i:1:p:23-44
    DOI: 10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-2
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-2
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Yang & Yibo Wang & Chansheng He & Xingyan Tan & Zhibo Han, 2019. "Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China," Sustainability, MDPI, vol. 11(15), pages 1-14, August.
    2. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    3. Sasiri Bandara & Duane Froese & Trevor J. Porter & Fabrice Calmels, 2020. "Holocene pore‐ice δ18O and δ2H records from drained thermokarst lake basins in the Old Crow Flats, Yukon, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 497-508, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:8:y:1997:i:1:p:23-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.