IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v8y1997i1p1-22.html
   My bibliography  Save this article

Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic

Author

Listed:
  • V. E. Romanovsky
  • T. E. Osterkamp

Abstract

Maximum active layer thicknesses increased from the coast inland with means of 0.36 m at West Dock, 0.53 m at Deadhorse, and 0.62 m at Franklin Bluffs and varied systematically from 1986 to 1992 by factors up to two (0.21 m to 0.45 m at West Dock). Maximum thicknesses occurred at all sites in 1989 and the recent data indicate a broad minimum from 1992 through 1995. Since trace gas emissions from tundra depend on active layer thicknesses, these results indicate potential systematic changes in trace gas emissions. A modified Kudryavtsev equation has advantages over other analytical models and accurately estimates active layer thicknesses in the Prudhoe Bay region. Stefan‐type equations for predicting active layer thicknesses can lead to systematic errors of up to 71%. Temperatures at the ground surface when thawing ceases were estimated to be about 2°C. The active layer typically reached its maximum thickness and began freezing upward from the bottom one to two weeks earlier than the beginning of freezing from the surface. Deviations (RMS) between calculated (using a calibrated finite element model) and measured temperatures were in the range 0.2–0.3 K indicating that a purely conductive heat flow model can be used for accurate predictions of active layer and permafrost temperatures. Previously estimated values of thermal offset were improved using adjusted thermal conductivity values indicated by the thermal modelling. © 1997 John Wiley & Sons, Ltd. L'épaisseur maximum de la couche active a augmenté depuis la côte avec des moyennes de 0.36 m à “West Dock”, 0.53 m à “Deadhorse” et 0.62 m à “Franklin Bluffs” et a varié systématiquement de 1986 à 1992 selon des facteurs atteignant 2 (0.21 m à 0.45 m à “West Dock”). Les épaisseurs maximales ont été observées dans tous les sites en 1989 et les données récentes indiquent un large minimum de 1992 à 1995. Comme les émissions de gaz dépendent de l'épaisseur de la couche active, ces résultats indiquent un changement potentiel systématique dans l'émission des gaz. Une équation Kudryavtsev modifiée présente des avantages sur d'autres modèles analytiques et estime avec précision l'épaisseur de la couche active dans la région de Prudhoe Bay. Les équations de type Stefan pour prédire l'épaisseur de la couche active conduisent à des erreurs systématiques de plus de 71%. Les températures estimées à la surface du sol quand le dégel se termine, sont proches de 2°C. La couche active atteint ordinairement son épaisseur maximum et commence à geler du fond vers le haut une à deux semaines plus tôt que le début du regel en surface. Des différences entre les températures calculées (en employant un modèle à éléments finis calibrés) et les températures mesurées sont de l'ordre de 0.2–0.3 K, indiquant ainsi qu'un modèle d'écoulement de la chaleur par seule conduction peut être utilisé pour prédire avec précision les températures de la couche active et du pergélisol. Des valeurs précédemment estimées des pertes thermiques ont été améliorées en utilisant des valeurs de conductivité thermique ajustées indiquées par le modèle thermique. © 1997 John Wiley & Sons, Ltd.

Suggested Citation

  • V. E. Romanovsky & T. E. Osterkamp, 1997. "Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 8(1), pages 1-22, January.
  • Handle: RePEc:wly:perpro:v:8:y:1997:i:1:p:1-22
    DOI: 10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-U
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-U
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1099-1530(199701)8:13.0.CO;2-U?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Yang & Yibo Wang & Chansheng He & Xingyan Tan & Zhibo Han, 2019. "Soil Water Content and Temperature Dynamics under Grassland Degradation: A Multi-Depth Continuous Measurement from the Agricultural Pastoral Ecotone in Northwest China," Sustainability, MDPI, vol. 11(15), pages 1-14, August.
    2. Vladimir P. Melnikov & Victor I. Osipov & Anatoly V. Brouchkov & Arina A. Falaleeva & Svetlana V. Badina & Mikhail N. Zheleznyak & Marat R. Sadurtdinov & Nikolay A. Ostrakov & Dmitry S. Drozdov & Alex, 2022. "Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 231-251, May.
    3. Eva Stephani & Jeremiah Drage & Duane Miller & Benjamin M. Jones & Mikhail Kanevskiy, 2020. "Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(2), pages 239-254, April.
    4. Sasiri Bandara & Duane Froese & Trevor J. Porter & Fabrice Calmels, 2020. "Holocene pore‐ice δ18O and δ2H records from drained thermokarst lake basins in the Old Crow Flats, Yukon, Canada," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 497-508, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:8:y:1997:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.