IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v35y1988i1p119-123.html
   My bibliography  Save this article

An (s,S) inventory system with rest periods to the server

Author

Listed:
  • Jacob K. Daniel
  • R. Ramanarayanan

Abstract

We study the (s,S) inventory system in which the server takes a rest when the level of the inventory is zero. The demands are assumed to occur for one unit at a time. The interoccurrence times between successive demands, the lead times, and the rest times are assumed to follow general distributions which are mutually independent. Using renewal and convolution techniques we obtain the state transition probabilities.

Suggested Citation

  • Jacob K. Daniel & R. Ramanarayanan, 1988. "An (s,S) inventory system with rest periods to the server," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 119-123, February.
  • Handle: RePEc:wly:navres:v:35:y:1988:i:1:p:119-123
    DOI: 10.1002/1520-6750(198802)35:13.0.CO;2-P
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198802)35:13.0.CO;2-P
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198802)35:13.0.CO;2-P?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michel Scholl & Leonard Kleinrock, 1983. "On the M / G /1 Queue with Rest Periods and Certain Service-Independent Queueing Disciplines," Operations Research, INFORMS, vol. 31(4), pages 705-719, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeganathan, K. & Abdul Reiyas, M. & Prasanna Lakshmi, K. & Saravanan, S., 2019. "Two server Markovian inventory systems with server interruptions: Heterogeneous vs. homogeneous servers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 177-200.
    2. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    3. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    4. I. Padmavathi & B. Sivakumar & G. Arivarignan, 2015. "A retrial inventory system with single and modified multiple vacation for server," Annals of Operations Research, Springer, vol. 233(1), pages 335-364, October.
    5. I. Padmavathi & A. Shophia Lawrence & B. Sivakumar, 2016. "A finite-source inventory system with postponed demands and modified M vacation policy," OPSEARCH, Springer;Operational Research Society of India, vol. 53(1), pages 41-62, March.
    6. M. Nithya & Gyanendra Prasad Joshi & C. Sugapriya & S. Selvakumar & N. Anbazhagan & Eunmok Yang & Ill Chul Doo, 2022. "Analysis of Stochastic State-Dependent Arrivals in a Queueing-Inventory System with Multiple Server Vacation and Retrial Facility," Mathematics, MDPI, vol. 10(17), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. H. Brill & C. M. Harris, 1992. "Waiting times for M/G/1 queues with service‐time or delay‐dependent server vacations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(6), pages 775-787, October.
    2. Offer Kella & Uri Yechiali, 1988. "Priorities in M/G/1 queue with server vacations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(1), pages 23-34, February.
    3. G. K. Tamrakar & A. Banerjee, 2020. "On steady-state joint distribution of an infinite buffer batch service Poisson queue with single and multiple vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1337-1373, December.
    4. Wu-Lin Chen, 2019. "Computing the Moments of Polling Models with Batch Poisson Arrivals by Transform Inversion," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 515-526, July.
    5. B. Kumar & D. Arivudainambi & A. Krishnamoorthy, 2006. "Some results on a generalized M/G/1 feedback queue with negative customers," Annals of Operations Research, Springer, vol. 143(1), pages 277-296, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:35:y:1988:i:1:p:119-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.