IDEAS home Printed from https://ideas.repec.org/a/wly/navlog/v31y1984i4p543-550.html
   My bibliography  Save this article

Optimal policy of continuous and discrete replacement with minimal repair at failure

Author

Listed:
  • Toshio Nakagawa

Abstract

This article considers combined continuous and discrete replacement with minimal repair at failure, in which a unit is replaced at time T or at number N of uses. Both optimal time T* and number N* to minimize the expected cost rate are discussed. They are found by unique solutions of equations when the hazard rates are monotonously increasing. A numerical example is given.

Suggested Citation

  • Toshio Nakagawa, 1984. "Optimal policy of continuous and discrete replacement with minimal repair at failure," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 31(4), pages 543-550, December.
  • Handle: RePEc:wly:navlog:v:31:y:1984:i:4:p:543-550
    DOI: 10.1002/nav.3800310404
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.3800310404
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.3800310404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Frank Beichelt, 1993. "A unifying treatment of replacement policies with minimal repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 51-67, February.
    3. Wu, Jing & Qian, Cunhua & Dohi, Tadashi, 2024. "Optimal opportunity-based age replacement policies in discrete time," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Jing Wu & Cunhua Qian & Tadashi Dohi, 2024. "A Net Present Value Analysis of Opportunity-Based Age Replacement Models in Discrete Time," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    5. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    6. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navlog:v:31:y:1984:i:4:p:543-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1931-9193 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.