IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v37y2017i12p1155-1178.html
   My bibliography  Save this article

Pricing Vulnerable Options with Jump Clustering

Author

Listed:
  • Yong Ma
  • Keshab Shrestha
  • Weidong Xu

Abstract

This paper presents a valuation of vulnerable European options using a model with self‐exciting Hawkes processes that allow for clustered jumps rather than independent jumps. Many existing valuation models can be regarded as special cases of the model proposed here. Using numerical analyses, this study also performs sensitivity analyses and compares the results to those of existing models for European call options. The results show that jump clustering has a significant impact on the option value. © 2017 Wiley Periodicals, Inc. Jrl Fut Mark

Suggested Citation

  • Yong Ma & Keshab Shrestha & Weidong Xu, 2017. "Pricing Vulnerable Options with Jump Clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(12), pages 1155-1178, December.
  • Handle: RePEc:wly:jfutmk:v:37:y:2017:i:12:p:1155-1178
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Yong & Pan, Dongtao & Shrestha, Keshab & Xu, Weidong, 2020. "Pricing and hedging foreign equity options under Hawkes jump–diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Chaoqun Ma & Shengjie Yue & Hui Wu & Yong Ma, 2020. "Pricing Vulnerable Options with Stochastic Volatility and Stochastic Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 391-429, August.
    3. Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.
    5. Xinglin Yang & Ji Chen, 2021. "VIX term structure: The role of jump propagation risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 785-810, June.
    6. Hui Qu & Tianyang Wang & Peng Shangguan & Mengying He, 2024. "Revisiting the puzzle of jumps in volatility forecasting: The new insights of high‐frequency jump intensity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(2), pages 218-251, February.
    7. Xingchun Wang, 2022. "Valuing fade-in options with default risk in Heston–Nandi GARCH models," Review of Derivatives Research, Springer, vol. 25(1), pages 1-22, April.
    8. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    9. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Jing, Bo & Li, Shenghong & Ma, Yong, 2021. "Consistent pricing of VIX options with the Hawkes jump-diffusion model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    11. Weiyi Liu & Song‐Ping Zhu, 2019. "Pricing variance swaps under the Hawkes jump‐diffusion process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 635-655, June.
    12. Xiangdong Liu & Zanbin Zhang, 2023. "Pricing European Vulnerable Options with Jumps and Stochastic Default Obstacles Barrier under Regime Switching," Mathematics, MDPI, vol. 11(19), pages 1-18, October.
    13. Nian Yao & Zhiqiu Li & Zhichao Ling & Junfeng Lin, 2020. "Asymptotic Smiles for an Affine Jump-Diffusion Model," Papers 2003.00334, arXiv.org, revised May 2020.
    14. Ziming Dong & Dan Tang & Xingchun Wang, 2023. "Pricing vulnerable basket spread options with liquidity risk," Review of Derivatives Research, Springer, vol. 26(1), pages 23-50, April.
    15. Wang, Xingchun, 2022. "Pricing vulnerable options with stochastic liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    16. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    17. Liang-Chih Liu & Chun-Yuan Chiu & Chuan-Ju Wang & Tian-Shyr Dai & Hao-Han Chang, 2022. "Analytical pricing formulae for vulnerable vanilla and barrier options," Review of Quantitative Finance and Accounting, Springer, vol. 58(1), pages 137-170, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:37:y:2017:i:12:p:1155-1178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.