IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v37y2018i2p191-200.html
   My bibliography  Save this article

A new parsimonious recurrent forecasting model in singular spectrum analysis

Author

Listed:
  • Rahim Mahmoudvand
  • Paulo Canas Rodrigues

Abstract

Singular spectrum analysis (SSA) is a powerful nonparametric method in the area of time series analysis that has shown its capability in different applications areas. SSA depends on two main choices: the window length L and the number of eigentriples used for grouping r. One of the most important issues when analyzing time series is the forecast of new observations. When using SSA for time series forecasting there are several alternative algorithms, the most widely used being the recurrent forecasting model, which assumes that a given observation can be written as a linear combination of the L−1 previous observations. However, when the window length L is large, the forecasting model is unlikely to be parsimonious. In this paper we propose a new parsimonious recurrent forecasting model that uses an optimal m(

Suggested Citation

  • Rahim Mahmoudvand & Paulo Canas Rodrigues, 2018. "A new parsimonious recurrent forecasting model in singular spectrum analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(2), pages 191-200, March.
  • Handle: RePEc:wly:jforec:v:37:y:2018:i:2:p:191-200
    DOI: 10.1002/for.2484
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2484
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
    2. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    3. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:37:y:2018:i:2:p:191-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.