IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v17y2014i2ps75-s100.html

Posterior inference in curved exponential families under increasing dimensions

Author

Listed:
  • Alexandre Belloni
  • Victor Chernozhukov

Abstract

In this paper, we study the large‐sample properties of the posterior‐based inference in the curved exponential family under increasing dimensions. The curved structure arises from the imposition of various restrictions on the model, such as moment restrictions, and plays a fundamental role in econometrics and others branches of data analysis. We establish conditions under which the posterior distribution is approximately normal, which in turn implies various good properties of estimation and inference procedures based on the posterior. In the process, we also revisit and improve upon previous results for the exponential family under increasing dimensions by making use of concentration of measure. We also discuss a variety of applications to high‐dimensional versions of classical econometric models, including the multinomial model with moment restrictions, seemingly unrelated regression equations, and single structural equation models. In our analysis, both the parameter dimensions and the number of moments are increasing with the sample size.

Suggested Citation

  • Alexandre Belloni & Victor Chernozhukov, 2014. "Posterior inference in curved exponential families under increasing dimensions," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 75-100, June.
  • Handle: RePEc:wly:emjrnl:v:17:y:2014:i:2:p:s75-s100
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12027
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallant, A. Ronald & Hong, Han & Leung, Michael P. & Li, Jessie, 2022. "Constrained estimation using penalization and MCMC," Journal of Econometrics, Elsevier, vol. 228(1), pages 85-106.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:17:y:2014:i:2:p:s75-s100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.