IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Prediction Of Demand For Primary Bond Offerings Using Artificial Neural Networks

Listed author(s):
  • Michal Tkac
  • Robert Verner
Registered author(s):

    Purpose: Primary bond markets represent an interesting investment opportunity not only for banks, insurance companies, and other institutional investors, but also for individuals looking for capital gains. Since offered securities vary in terms of their rating, industrial classification, coupon, or maturity, demand of buyers for particular offerings often overcomes issued volume and price of given bond on secondary market consequently rises. Investors might be regarded as consumers purchasing required service according to their specific preferences at desired price. This paper aims at analysis of demand for bonds on primary market using artificial neural networks. Design/methodology: We design a multilayered feedforward neural network trained by Levenberg-Marquardt algorithm in order to estimate demand for individual bonds based on parameters of particular offerings. Outcomes obtained by artificial neural network are compared with conventional econometric methods. Findings: Our results indicate that artificial neural network significantly outperformed standard econometric techniques and on examined sample of primary bond offerings achieved considerably better performance in terms of prediction accuracy and mean squared error. Originality: We show that proposed neural network is able to successfully predict demand for primary obligation offerings based on their specifications. Moreover, we identify relevant parameters of issues which are able to considerably affect total demand for given security. Our findings might not only help investors to detect marketable securities, but also enable issuing entities to increase demand for their bonds in order to decrease their offering price.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.qip-journal.eu/index.php/QIP/article/view/398/435
    Download Restriction: no

    Article provided by Technical University of Košice, Department of integrated management in its journal Quality Innovation Prosperity.

    Volume (Year): 18 (2014)
    Issue (Month): 2 ()
    Pages:

    as
    in new window

    Handle: RePEc:tuk:qipqip:v:18:y:2014:i:2:9
    Contact details of provider:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:tuk:qipqip:v:18:y:2014:i:2:9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matus Horvath)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.