IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v14y2014i2p237-258.html
   My bibliography  Save this article

Self-consistent density estimation

Author

Listed:
  • Joerg Luedicke

    (University of Florida)

  • Alberto Bernacchia

    (Jacobs University Bremen)

Abstract

Estimating a continuous density function from a finite set of data points is an important tool in many scientific disciplines. Popular nonparametric density estimators include histograms and kernel density methods. These methods require the researcher to control the degree of smoothing inherent in an estimated function. In a recent approach, a new method for nonparametric density estimation was proposed that finds the estimate self-consistently, that is without requiring the researcher to choose a smoothing parameter a priori. In this article, we outline the basic ideas of the self-consistent density estimator, and we present a Stata implementation of the method. In addition, we present results of Monte Carlo simulations that show that the self-consistent estimator performs better than other methods, especially for larger data samples. Copyright 2014 by StataCorp LP.

Suggested Citation

  • Joerg Luedicke & Alberto Bernacchia, 2014. "Self-consistent density estimation," Stata Journal, StataCorp LP, vol. 14(2), pages 237-258, June.
  • Handle: RePEc:tsj:stataj:v:14:y:2014:i:2:p:237-258
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj14-2/st0334/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0334
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Hanhuan & Han, Liyan, 2019. "Empirical distributions of stock returns: Mixed normal or kernel density?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 473-486.
    2. O’Brien, Travis A. & Kashinath, Karthik & Cavanaugh, Nicholas R. & Collins, William D. & O’Brien, John P., 2016. "A fast and objective multidimensional kernel density estimation method: fastKDE," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 148-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:14:y:2014:i:2:p:237-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.