IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v93y2011i4p1453-1459.html
   My bibliography  Save this article

Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection

Author

Listed:
  • Halbert White

    (University of California, San Diego)

  • Xun Lu

    (Hong Kong University of Science and Technology)

Abstract

Careful examination of the structure determining treatment choice and outcomes, as advocated by Heckman (2008), is central to the design of treatment effect estimators and, in particular, proper choice of covariates. Here, we demonstrate how causal diagrams developed in the machine learning literature by Judea Pearl and his colleagues, but not so well known to economists, can play a key role in this examination by using these methods to give a detailed analysis of the choice of efficient covariates identified by Hahn (2004). © 2011 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Suggested Citation

  • Halbert White & Xun Lu, 2011. "Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1453-1459, November.
  • Handle: RePEc:tpr:restat:v:93:y:2011:i:4:p:1453-1459
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00153
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    2. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
    3. Lu, Xun & White, Halbert, 2014. "Robustness checks and robustness tests in applied economics," Journal of Econometrics, Elsevier, vol. 178(P1), pages 194-206.
    4. Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
    5. Lewbel, Arthur & Lu, Xun & Su, Liangjun, 2015. "Specification testing for transformation models with an application to generalized accelerated failure-time models," Journal of Econometrics, Elsevier, vol. 184(1), pages 81-96.
    6. Deuchert, Eva & Huber, Martin, 2014. "A cautionary tale about control variables in IV estimation," FSES Working Papers 453, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    7. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    8. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    9. repec:bla:obuest:v:79:y:2017:i:3:p:411-425 is not listed on IDEAS
    10. Pingel, Ronnie & Waernbaum, Ingeborg, 2015. "Correlation and efficiency of propensity score-based estimators for average causal effects," Working Paper Series 2015:3, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    11. Lu, Xun & White, Halbert, 2014. "Testing for separability in structural equations," Journal of Econometrics, Elsevier, vol. 182(1), pages 14-26.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:93:y:2011:i:4:p:1453-1459. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristin Waites). General contact details of provider: http://mitpress.mit.edu/journals/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.