IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v53y2021i12p1295-1310.html
   My bibliography  Save this article

Decomposition methods for solving Markov decision processes with multiple models of the parameters

Author

Listed:
  • Lauren N. Steimle
  • Vinayak S. Ahluwalia
  • Charmee Kamdar
  • Brian T. Denton

Abstract

We consider the problem of decision-making in Markov decision processes (MDPs) when the reward or transition probability parameters are not known with certainty. We study an approach in which the decision maker considers multiple models of the parameters for an MDP and wishes to find a policy that optimizes an objective function that considers the performance with respect to each model, such as maximizing the expected performance or maximizing worst-case performance. Existing solution methods rely on mixed-integer program (MIP) formulations, but have previously been limited to small instances, due to the computational complexity. In this article, we present branch-and-cut and policy-based branch-and-bound (PB-B&B) solution methods that leverage the decomposable structure of the problem and allow for the solution of MDPs that consider many models of the parameters. Numerical experiments show that a customized implementation of PB-B&B significantly outperforms the MIP-based solution methods and that the variance among model parameters can be an important factor in the value of solving these problems.

Suggested Citation

  • Lauren N. Steimle & Vinayak S. Ahluwalia & Charmee Kamdar & Brian T. Denton, 2021. "Decomposition methods for solving Markov decision processes with multiple models of the parameters," IISE Transactions, Taylor & Francis Journals, vol. 53(12), pages 1295-1310, December.
  • Handle: RePEc:taf:uiiexx:v:53:y:2021:i:12:p:1295-1310
    DOI: 10.1080/24725854.2020.1869351
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2020.1869351
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2020.1869351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:53:y:2021:i:12:p:1295-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.