IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i9p1014-1031.html
   My bibliography  Save this article

Reliability bounds for multi-state systems by fusing multiple sources of imprecise information

Author

Listed:
  • Tangfan Xiahou
  • Yu Liu

Abstract

It is crucial to evaluate reliability measures of a system over time, so that reliability-related decisions, such as maintenance planning and warranty policy, can be appropriately made for the system. However, accurately assessing system reliability becomes challenging if only limited amounts of reliability data are available. On the other hand, imprecise information related to reliability measures of a system can be collected based on experts’ judgments/experiences, and these pieces of information may be, however, heterogeneous and come from multiple sources. By properly fusing the imprecise information, reliability bounds of a system can be assessed to facilitate the ensuing reliability-related decision-making. In this article, a constrained optimization framework is proposed to assess reliability bounds of multi-state systems by fusing multiple sources of imprecise information. The proposed framework is composed of three basic steps: (i) constructing a set of constraints for a resulting optimization formulation by representing all the imprecise information as functions of unknown parameters of the degradation models for components; (ii) identifying the upper and lower bounds of the system reliability function by resolving the resulting constrained optimization problem via a tailored feasibility-based particle swarm algorithm; and (iii) developing a model selection approach to choose the best component degradation model that matches with all the imprecise information to the maximum extent. A numerical example along with an engineering example is given to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Tangfan Xiahou & Yu Liu, 2020. "Reliability bounds for multi-state systems by fusing multiple sources of imprecise information," IISE Transactions, Taylor & Francis Journals, vol. 52(9), pages 1014-1031, September.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:9:p:1014-1031
    DOI: 10.1080/24725854.2019.1680910
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1680910
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1680910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiang-Yu & Li, Xiaopeng & Feng, Jianxiang & Li, Congming & Xiong, Xiaoyan & Huang, Hong-Zhong, 2023. "Reliability analysis and optimization of multi-phased spaceflight with backup missions and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Liming Gou & Jian Zhang & Naiwen Li & Zongshui Wang & Jindong Chen & Lin Qi, 2022. "Weighted assignment fusion algorithm of evidence conflict based on Euclidean distance and weighting strategy, and application in the wind turbine system," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    3. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:9:p:1014-1031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.