IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v51y2019i2p181-191.html
   My bibliography  Save this article

Job sizing and sequencing in additive manufacturing to control process deterioration

Author

Listed:
  • Yossi Luzon
  • Eugene Khmelnitsky

Abstract

The term Additive Manufacturing (AM) describes a set of novel manufacturing technologies in which successive layers of matter are formed to create an object, e.g., three-dimensional (3D) printing. These technologies have several major advantages that have led to their rapidly increasing involvement in mass production. However, due to their unique properties they are subject to deterioration, which is expressed in the aging of different components followed by random maintenance requirements. Additionally, they are all preemptive-repeat; namely, if a failure occurs during the printing of an object, then its printing will have to recommence from the start as the work is resumed. This article addresses the problem of sequencing an AM process while referring to its relevant properties. It also addresses a more complicated environment in which the work may arrive over time. We adopt a stochastic preemptive-repeat scheduling model, generalize it to incorporate the process age, and develop the formalization of two main measures of a given schedule: the expected completion time, i.e., the time duration required to complete the printing of all jobs, and the total expected flow time, i.e., the expected time a job spends in the system. Our formalization enables the determination of a schedule that minimizes these measures. In particular, we formulate and solve a constrained continuous optimization problem to determine the optimal size of the designed jobs to be printed. This challenge, which relates to the unique flexibility of these technologies, currently hinders the practice of dental 3D printing manufacturing lines.

Suggested Citation

  • Yossi Luzon & Eugene Khmelnitsky, 2019. "Job sizing and sequencing in additive manufacturing to control process deterioration," IISE Transactions, Taylor & Francis Journals, vol. 51(2), pages 181-191, February.
  • Handle: RePEc:taf:uiiexx:v:51:y:2019:i:2:p:181-191
    DOI: 10.1080/24725854.2018.1460518
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2018.1460518
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2018.1460518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altekin, F. Tevhide & Bukchin, Yossi, 2022. "A multi-objective optimization approach for exploring the cost and makespan trade-off in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 301(1), pages 235-253.
    2. Oğuzhan Ahmet Arık, 2022. "Additive manufacturing scheduling problem considering assembly operations of parts," Operational Research, Springer, vol. 22(3), pages 3063-3087, July.
    3. Jose M. Framinan & Paz Perez-Gonzalez & Victor Fernandez-Viagas, 2023. "An overview on the use of operations research in additive manufacturing," Annals of Operations Research, Springer, vol. 322(1), pages 5-40, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:2:p:181-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.