IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v51y2019i12p1365-1382.html
   My bibliography  Save this article

Optimal control policies for assemble-to-order systems with commitment lead time

Author

Listed:
  • Taher Ahmadi
  • Zumbul Atan
  • Ton de Kok
  • Ivo Adan

Abstract

In this article, we study a preorder strategy which requires customers to place orders ahead of their actual need. We characterize the preorder strategy by a commitment lead time. We define the commitment lead time as the time that elapses between the moment an order is communicated by the customer and the moment the order must be delivered to the customer. We investigate the value of using this preorder strategy in managing assemble-to-order systems. For this purpose, we consider a manufacturer, who operates an assemble-to-order system with two components and a single end product. The manufacturer uses continuous-review base-stock policies for replenishing component inventories. Customer demand occurs for the end product only and unsatisfied customer demands are backordered. Since customers provide advance demand information by preordering, they receive a bonus. We refer to this bonus from the manufacturer’s perspective as a commitment cost. We determine the optimal component base-stock levels and the optimal length of the commitment lead time, which minimize the sum of long-run average component inventory holding, backordering and commitment costs. We find that the optimal commitment lead time is either zero or equals the replenishment lead time of one of the components. When the optimal commitment lead time is zero, the preorder strategy is not beneficial and the optimal control strategy for both components is buy-to-stock. When the optimal commitment lead time equals the lead time of the component with the shorter lead time, the optimal control strategy for this component is buy-to-order and it is buy-to-stock for the other component. On the other hand, when the optimal commitment lead time equals the lead time of the component with the longer lead time, the optimal control strategy is the buy-to-order strategy for both components. We find the unit commitment cost thresholds which determine the conditions under which one of these three cases hold.

Suggested Citation

  • Taher Ahmadi & Zumbul Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for assemble-to-order systems with commitment lead time," IISE Transactions, Taylor & Francis Journals, vol. 51(12), pages 1365-1382, December.
  • Handle: RePEc:taf:uiiexx:v:51:y:2019:i:12:p:1365-1382
    DOI: 10.1080/24725854.2019.1589658
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1589658
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1589658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taher Ahmadi & Zümbül Atan & Ton de Kok & Ivo Adan, 2019. "Optimal control policies for an inventory system with commitment lead time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(3), pages 193-212, April.
    2. Jana Ralfs & Gudrun P. Kiesmüller, 2022. "Inventory management with advance demand information and flexible shipment consolidation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1009-1044, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:51:y:2019:i:12:p:1365-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.