IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v50y2018i10p868-877.html
   My bibliography  Save this article

An efficient phased-mission reliability model considering dynamic k-out-of-n subsystem redundancy

Author

Listed:
  • Suprasad V. Amari
  • Chaonan Wang
  • Liudong Xing
  • Rahamat Mohammad

Abstract

In this article, an efficient method is proposed for exact reliability evaluation of a special class of Phased-Mission Systems (PMSs) containing multiple k-out-of-n subsystems, each of which has multiple identical and non-repairable components. A PMS performs missions involving multiple, consecutive, and non-overlapping phases of operations. In each phase, the system has to accomplish a specific task and may be subject to different stresses. Thus, the configuration of each subsystem can change from phase to phase, including its active and inactive status, redundancy type, and minimum required working components. If any one of the required (active) subsystems is failed in a phase, the system is considered to be failed in that phase. The proposed method for accurate reliability analysis of PMS considers statistical dependencies of component states across the phases, time-varying and phase-dependent failure rates, and associated cumulative damage effects. Based on conditional probabilities and an efficient recursive formula to compute these probabilities, the proposed method has both computational time and memory requirements linear to the system size. Medium-scale and large-scale systems are analyzed to demonstrate high efficiency of the proposed method.

Suggested Citation

  • Suprasad V. Amari & Chaonan Wang & Liudong Xing & Rahamat Mohammad, 2018. "An efficient phased-mission reliability model considering dynamic k-out-of-n subsystem redundancy," IISE Transactions, Taylor & Francis Journals, vol. 50(10), pages 868-877, October.
  • Handle: RePEc:taf:uiiexx:v:50:y:2018:i:10:p:868-877
    DOI: 10.1080/24725854.2018.1439205
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2018.1439205
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2018.1439205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wang, Chaonan & Xing, Liudong & Su, Yujie & Guan, Quanlong & Tang, Bo & Hu, Yuliang, 2023. "Reliability analysis of dynamic voting phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Bora Çekyay, 2021. "Reliability of mission-based k-out-of-n systems with exponential phase durations and component lifetimes," Journal of Risk and Reliability, , vol. 235(3), pages 446-457, June.
    5. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    6. Hui Xiao & Kunxiang Yi & Gang Kou & Liudong Xing, 2020. "Reliability of a two‐dimensional demand‐based networked system with multistate components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 453-468, September.
    7. Zhang, Hengjie & Dong, Yucheng & Xiao, Jing & Chiclana, Francisco & Herrera-Viedma, Enrique, 2021. "Consensus and opinion evolution-based failure mode and effect analysis approach for reliability management in social network and uncertainty contexts," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Xiahou, Tangfan & Zheng, Yi-Xuan & Liu, Yu & Chen, Hong, 2023. "Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Eslami Baladeh, Aliakbar & Taghipour, Sharareh, 2022. "Reliability optimization of dynamic k-out-of-n systems with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    10. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang & Guo, Peng & Zhu, Wenjin, 2020. "Mission success probability optimization for phased-mission systems with repairable component modules," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:50:y:2018:i:10:p:868-877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.