IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v42y2010i3p232-246.html
   My bibliography  Save this article

Cooperative cover location problems: The planar case

Author

Listed:
  • Oded Berman
  • Zvi Drezner
  • Dmitry Krass

Abstract

A cooperative-covering family of location problems is proposed in this paper. Each facility emits a (possibly non-physical) “signal” which decays over the distance and each demand point observes the aggregate signal emitted by all facilities. It is assumed that a demand point is covered if its aggregate signal exceeds a given threshold; thus facilities cooperate to provide coverage, as opposed to the classical coverage location model where coverage is only provided by the closest facility. It is shown that this cooperative assumption is appropriate in a variety of applications. Moreover, ignoring the cooperative behavior (i.e., assuming the traditional individual coverage framework) leads to solutions that are significantly worse than the optimal cooperative cover solutions; this is illustrated with a case study of locating warning sirens in North Orange County, California. The problems are formulated, analyzed and solved in the plane for the Euclidean distance case. Optimal and heuristic algorithms are proposed and extensive computational experiments are reported.

Suggested Citation

  • Oded Berman & Zvi Drezner & Dmitry Krass, 2010. "Cooperative cover location problems: The planar case," IISE Transactions, Taylor & Francis Journals, vol. 42(3), pages 232-246.
  • Handle: RePEc:taf:uiiexx:v:42:y:2010:i:3:p:232-246
    DOI: 10.1080/07408170903394355
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170903394355
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170903394355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    2. Masashi Miyagawa, 2020. "Optimal number and length of point-like and line-like facilities of grid and random patterns," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 213-230, April.
    3. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:42:y:2010:i:3:p:232-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.