IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v50y2019i7p1338-1352.html
   My bibliography  Save this article

Data-driven adaptive dynamic programming for partially observable nonzero-sum games via Q-learning method

Author

Listed:
  • Wei Wang
  • Xin Chen
  • Hao Fu
  • Min Wu

Abstract

This paper concerns with a class of discrete-time linear nonzero-sum games with the partially observable system state. As is known, the optimal control policy for the nonzero-sum games relies on the full state measurement which is hard to fulfil in partially observable environment. Moreover, to achieve the optimal control, one needs to know the accurate system model. To overcome these deficiencies, this paper develops a data-driven adaptive dynamic programming method via Q-learning method using measurable input/output data without any system knowledge. First, the representation of the unmeasurable inner system state is built using historical input/output data. Then, based on the representation state, a Q-function-based policy iteration approach with convergence analysis is introduced to approximate the optimal control policy iteratively. A neural network (NN)-based actor-critic framework is applied to implement the developed data-driven approach. Finally, two simulation examples are provided to demonstrate the effectiveness of the developed approach.

Suggested Citation

  • Wei Wang & Xin Chen & Hao Fu & Min Wu, 2019. "Data-driven adaptive dynamic programming for partially observable nonzero-sum games via Q-learning method," International Journal of Systems Science, Taylor & Francis Journals, vol. 50(7), pages 1338-1352, May.
  • Handle: RePEc:taf:tsysxx:v:50:y:2019:i:7:p:1338-1352
    DOI: 10.1080/00207721.2019.1599463
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2019.1599463
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2019.1599463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mircea-Bogdan Radac & Anamaria-Ioana Borlea, 2021. "Virtual State Feedback Reference Tuning and Value Iteration Reinforcement Learning for Unknown Observable Systems Control," Energies, MDPI, vol. 14(4), pages 1-26, February.
    2. Mircea-Bogdan Radac & Timotei Lala, 2021. "Hierarchical Cognitive Control for Unknown Dynamic Systems Tracking," Mathematics, MDPI, vol. 9(21), pages 1-23, October.
    3. Wang, Pengyu & Fang, Debin & Wang, Shuyi, 2022. "Optimal dynamic regulation in retail electricity market with consumer feedback and social learning," Energy Policy, Elsevier, vol. 168(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:50:y:2019:i:7:p:1338-1352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.