IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v48y2017i2p257-263.html
   My bibliography  Save this article

Stability analysis of time-delay systems via free-matrix-based double integral inequality

Author

Listed:
  • Changchun Hua
  • Shuangshuang Wu
  • Xian Yang
  • Xinping Guan

Abstract

Based on the free-weighting matrix and integral-inequality methods, a free-matrix-based double integral inequality is proposed in this paper, which includes the Wirtinger-based double integral inequality as a special case. By introducing some free matrices into the inequality, more freedom can be provided in bounding the quadratic double integral. The connection of the new integral inequality and Wirtinger-based double one is well described, which gives a sufficient condition for the application of the new inequality to be less conservative. Furthermore, to investigate the effectiveness of the proposed inequality, a new delay-dependent stability criterion is derived in terms of linear matrix inequalities. Numerical examples are given to demonstrate the advantages of the proposed method.

Suggested Citation

  • Changchun Hua & Shuangshuang Wu & Xian Yang & Xinping Guan, 2017. "Stability analysis of time-delay systems via free-matrix-based double integral inequality," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 257-263, January.
  • Handle: RePEc:taf:tsysxx:v:48:y:2017:i:2:p:257-263
    DOI: 10.1080/00207721.2016.1177132
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2016.1177132
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2016.1177132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    2. Mohamed Karim Bouafoura & Naceur Benhadj Braiek, 2019. "Hybrid Functions Direct Approach and State Feedback Optimal Solutions for a Class of Nonlinear Polynomial Time Delay Systems," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    3. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Mi, Ling & Qiu, Baolin, 2019. "Fixed-time projective synchronization of memristive neural networks with discrete delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:48:y:2017:i:2:p:257-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.