IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v43y2012i12p2185-2192.html
   My bibliography  Save this article

Minimising makespan for two batch-processing machines with non-identical job sizes in job shop

Author

Listed:
  • Bayi Cheng
  • Shanlin Yang
  • Ying Ma

Abstract

In this article, the job shop scheduling problem with two batch-processing machines is considered. The machines have limited capacity and the jobs have non-identical job sizes. The jobs are processed in batches and the total size of each batch cannot exceed the machine capacity. The processing times of a job on the two machines are proportional. We show the problem of minimising makespan is NP-hard in the strong sense. Then we provide an approximation algorithm with worst-case ratio no more than 4, and the running time of the algorithm is O(n log n). Finally, the performance of the proposed algorithm is tested by different levels of instances. Computational results demonstrate the effectiveness of the algorithm for all the instances.

Suggested Citation

  • Bayi Cheng & Shanlin Yang & Ying Ma, 2012. "Minimising makespan for two batch-processing machines with non-identical job sizes in job shop," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(12), pages 2185-2192.
  • Handle: RePEc:taf:tsysxx:v:43:y:2012:i:12:p:2185-2192
    DOI: 10.1080/00207721.2011.577250
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.577250
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.577250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B.‐Y. Cheng & J.Y.‐T. Leung & K. Li & S.‐L. Yang, 2015. "Single batch machine scheduling with deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 470-482, September.
    2. Alessandro Druetto & Erica Pastore & Elena Rener, 2023. "Parallel batching with multi-size jobs and incompatible job families," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 440-458, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:43:y:2012:i:12:p:2185-2192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.