IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v42y2011i2p277-286.html
   My bibliography  Save this article

Air-fuel ratio control in a gasoline engine

Author

Listed:
  • J. Lauber
  • T.M. Guerra
  • M. Dambrine

Abstract

The aim of this article is to design an air-fuel ratio control law for a gasoline IC engine. The air-fuel ratio is measured by a lambda sensor in the exhaust manifold. As a consequence, a variable transport delay arises in the model considered. A non-linear control approach based on a Takagi–Sugeno's model of the system is used. Then, two structures of control law are compared based on parallel distributed compensation control laws, which take into account the variable time delay. Finally, some simulations are given to show the efficiency of the developed control law.

Suggested Citation

  • J. Lauber & T.M. Guerra & M. Dambrine, 2011. "Air-fuel ratio control in a gasoline engine," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(2), pages 277-286.
  • Handle: RePEc:taf:tsysxx:v:42:y:2011:i:2:p:277-286
    DOI: 10.1080/00207720902957236
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207720902957236
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207720902957236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tammo Zobel & Christian Schürch & Konstantinos Boulouchos & Christopher Onder, 2020. "Reduction of Cold-Start Emissions for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
    3. Turki Alsuwian & Muhammad Tayyeb & Arslan Ahmed Amin & Muhammad Bilal Qadir & Saleh Almasabi & Mohammed Jalalah, 2022. "Design of a Hybrid Fault-Tolerant Control System for Air–Fuel Ratio Control of Internal Combustion Engines Using Genetic Algorithm and Higher-Order Sliding Mode Control," Energies, MDPI, vol. 15(15), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:42:y:2011:i:2:p:277-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.