IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v42y2011i10p1581-1599.html
   My bibliography  Save this article

Digital controller design for Bouc–Wen model with high-order hysteretic nonlinearities through approximated scalar sign function

Author

Listed:
  • Jian Wu
  • Leang-San Shieh
  • Yongpeng Zhang
  • Gangbing Song

Abstract

In the models of piezoelectric actuator (PEA) systems, the hysteresis effects are often described by the concise Bouc–Wen models; however, these models are nonlinear and non-smooth because of the existence of terms which involve the absolute-value function. In particular, a challenging control problem is posed when, due to the properties of certain materials, such absolute-value terms are of high order. This control problem has been rarely studied. This article proposes the use of the approximated scalar sign function (ASSF), which is a numerically stable and differentiable nonlinear function, to represent the hysteresis function, with single-order or high-order absolute-value terms. This innovative step leads to a nonlinear but sufficiently smooth model. Then, a systematic digital design methodology is presented, which involves the following steps: (1) establish an optimal linear model based upon the resulting smooth model, (2) adopt a PI-based analogue controller and (3) apply the prediction-based digital redesign technique for digital implementation. A digital observer is also developed for state reconstruction, and to improve the input disturbance rejection. The positioning control of a PEA system with a high-order hysteretic Bouc–Wen model is implemented to demonstrate the effectiveness of the proposed ASSF based modelling and controller design approaches.

Suggested Citation

  • Jian Wu & Leang-San Shieh & Yongpeng Zhang & Gangbing Song, 2011. "Digital controller design for Bouc–Wen model with high-order hysteretic nonlinearities through approximated scalar sign function," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(10), pages 1581-1599.
  • Handle: RePEc:taf:tsysxx:v:42:y:2011:i:10:p:1581-1599
    DOI: 10.1080/00207721.2010.520095
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2010.520095
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2010.520095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Weixing & Lin, Xiongsen & Lu, Yunfei & Li, Shaoxun & Wang, Lucai & Zhang, Yongkuang & Gao, Feng, 2023. "Design and experiment of a double-wing wave energy converter," Renewable Energy, Elsevier, vol. 202(C), pages 1497-1506.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:42:y:2011:i:10:p:1581-1599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.