IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i22p6922-6942.html
   My bibliography  Save this article

An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system

Author

Listed:
  • Jun-qing Li
  • Shun-Chang Bai
  • Pei-yong Duan
  • Hong-yan Sang
  • Yu-yan Han
  • Zhi-xin Zheng

Abstract

This paper proposes an improved artificial bee colony (IABC) algorithm for addressing the distributed flow shop considering the distance coefficient found in precast concrete production system, with the minimisation of the makespan. In the proposed algorithm, each solution is first represented by a two-dimensional vector, where the first dimensional vector is the factory and the second dimensional vector lists the operation scheduling sequence of each factory. Second, considering the distributed problem feature, a distributed iterated greedy heuristic (DIG) is developed where destruction and construction processes are designed in detail while considering the distributed structures. Third, an efficient population initialisation method that considers the factory workload balance is presented. Then, a local search approach that randomly replaces two factories with two randomly selected jobs and that finds an optimal position for the two inserted operations via the DIG method is proposed. For the canonical ABC algorithm, using the DIG approach, the main three parts are improved, namely, the employee, onlooker, and scout bees. Finally, the proposed algorithm is tested on sets of extended instances based on the well-known benchmarks. Through an analysis of the experimental results, the highly effective proposed IABC algorithm is compared to several efficient algorithms drawn from the literature.

Suggested Citation

  • Jun-qing Li & Shun-Chang Bai & Pei-yong Duan & Hong-yan Sang & Yu-yan Han & Zhi-xin Zheng, 2019. "An improved artificial bee colony algorithm for addressing distributed flow shop with distance coefficient in a prefabricated system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 6922-6942, November.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:22:p:6922-6942
    DOI: 10.1080/00207543.2019.1571687
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1571687
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1571687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    2. Mei Li & Gai-Ge Wang & Helong Yu, 2021. "Sorting-Based Discrete Artificial Bee Colony Algorithm for Solving Fuzzy Hybrid Flow Shop Green Scheduling Problem," Mathematics, MDPI, vol. 9(18), pages 1-30, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:22:p:6922-6942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.