IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v8y2013i3p389-418.html
   My bibliography  Save this article

Empirical Hierarchical Modelling for Count Data using the Spatial Random Effects Model

Author

Listed:
  • Aritra Sengupta
  • Noel Cressie

Abstract

Count data over spatial lattices are the building blocks of spatial econometric data (e.g. unemployment rates in small areas). We consider a hierarchical statistical model made up of a Poisson model for the counts and an underlying Spatial Random Effects process for the logarithm of the mean of the Poisson distribution. The resulting dimension reduction leads to substantial computational speed-ups. These models make no assumptions of homogeneity, stationarity, or isotropy. We develop maximum-likelihood estimates (MLEs) for the parameters of the underlying process using an EM algorithm, and we predict unknown mean counts over the entire spatial lattice.

Suggested Citation

  • Aritra Sengupta & Noel Cressie, 2013. "Empirical Hierarchical Modelling for Count Data using the Spatial Random Effects Model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 389-418, September.
  • Handle: RePEc:taf:specan:v:8:y:2013:i:3:p:389-418
    DOI: 10.1080/17421772.2012.760135
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2012.760135
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2012.760135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
    2. Isabel Proença & Ludgero Glórias, 2021. "Revisiting the Spatial Autoregressive Exponential Model for Counts and Other Nonnegative Variables, with Application to the Knowledge Production Function," Sustainability, MDPI, vol. 13(5), pages 1-22, March.
    3. Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, vol. 3(2), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:8:y:2013:i:3:p:389-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.