IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v7y2007i6p621-636.html
   My bibliography  Save this article

Value-at-risk forecasts under scrutiny—the German experience

Author

Listed:
  • Stefan Jaschke
  • Gerhard Stahl
  • Richard Stehle

Abstract

We present an analysis of the VaR forecasts and the P&L series of all 12 German banks that used internal models for regulatory purposes throughout the period from the beginning of 2001 to the end of 2004. One task of a supervisor is to estimate the 'recalibration factor', i.e. by how much a bank over- or underestimates its VaR. The Basel traffic light approach to backtesting, which maps the count of exceptions in the trailing year to a multiplicative penalty factor, can be viewed as a way to estimate the 'recalibration factor'. We introduce techniques that provide a much more powerful inference on the recalibration factor than the Basel approach based on the count of exceptions. The notions 'return on VaR (RoVaR)' and 'well-behaved forecast system' are keys to linking the problem at hand to the established literature on the evaluation of density forecasts. We perform extensive bootstrapping analyses allowing (1) an assessment of the accuracy of our estimates of the recalibration factor and (2) a comparison of the estimation error of different scale and quantile estimators. Certain robust estimators turn out to outperform the more popular estimators used in the literature. Empirical results for the non-public data are compared to the corresponding results for hypothetical portfolios based on publicly available market data. While these comparisons have to be interpreted with care since the banks' P&L data tend to be more contaminated with errors than the major market indices, they shed light on the similarities and differences between banks' RoVaRs and market index returns.

Suggested Citation

  • Stefan Jaschke & Gerhard Stahl & Richard Stehle, 2007. "Value-at-risk forecasts under scrutiny—the German experience," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 621-636.
  • Handle: RePEc:taf:quantf:v:7:y:2007:i:6:p:621-636 DOI: 10.1080/14697680600999104
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680600999104
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value-at-Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    2. Licheng Sun, 2003. "Nonlinear Drift And Stochastic Volatility: An Empirical Investigation Of Short-Term Interest Rate Models," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 26(3), pages 389-404.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    5. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, pages 445-473.
    6. Eckhard Platen & Gerhard Stahl, 2003. "A Structure for General and Specific Market Risk," Computational Statistics, Springer, vol. 18(3), pages 355-373, September.
    7. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
    8. Michael Phelan, 1995. "Probability and Statistics Applied to the Practice of Financial Risk Management: The Case of JP Morgan's RiskMetrics™," Center for Financial Institutions Working Papers 95-19, Wharton School Center for Financial Institutions, University of Pennsylvania.
    9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    10. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 39-69.
    11. Claudio Romano & Annalisa Di Clemente, 2005. "Measuring Portfolio value-at-risk by a copula-evt based approach," STUDI ECONOMICI, FrancoAngeli Editore.
    12. Ravi Bansal & Hao Zhou, 2002. "Term Structure of Interest Rates with Regime Shifts," Journal of Finance, American Finance Association, vol. 57(5), pages 1997-2043, October.
    13. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, pages 531-554.
    14. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    15. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sibbertsen, Philipp & Stahl, Gerhard & Luedtke, Corinna, 2008. "Measuring Model Risk," Hannover Economic Papers (HEP) dp-409, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:7:y:2007:i:6:p:621-636. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.